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Introduction

Data interpolation in a classical sense means to generate unrecorded data from measured data that are, in
general, irregular distributed in a data space. This problem has been widely investigated and solved for
different applications. For seismic reflection data an additional difficulty occurs. Not all recorded samples
pertain to actual reflection events where an interpolation makes sense. Additionally, the recorded wave
field consists of different events, each of them is distributed along its own iso-phase surfaces. Each of
these surfaces has to be treated separately in the interpolation. Different strategies are used to overcome
this problem: for instance the use of a linear prediction error filtering interpolation (Spitz, 1991) or an
interpolation derived using the Cauchy criterion to obtain a high resolution sparse discrete Fourier transform
(Sacchi and Ulrych, 1996). The latter method estimates an operator that acts locally but is constructed by a
global minimization.
The parabolic and hyperbolic Radon transforms have been widely used as a tool for data interpolation. The
quality of the results depends on how well the data satisfy the assumption of hyperbolic moveouts. The idea
of a hyperbolic Radon transform with the apex location as an extra parameter was proposed recently by Trad
(2003).
Here, we present an interpolation method for 2D seismic reflection data that is based on the common-
reflection surface method for finite offset (Zhang et al., 2001). From a 2D acquisition we get a 3D (x-h-t) data
cube, where, in general, the prestack data are either arranged in common-shot (CS) or common-midpoint
(CMP) gathers. In the following, x denotes either the midpoint or the shot position, h the offset and t the
time. Our interpolation operator is estimated and acts locally in prestack (x-h-t) domain. The basic idea is to
fit locally a second order surface to the seismic events for each sample of a trace that has to be interpolated. A
subsequent weighted stack along this surface achieves the interpolation. The presented method is supposed
to be more accurate and stable than the methods based on a single local dip estimation.

Theory

For a sample t̂ of an interpolated trace located at (x̂, ĥ) in this data cube, we describe an iso-phase surface in
the prestack data locally by a second-order approximation as follows:

t(∆x,∆h) = t̂+b0∆x+b1∆h+a00∆x2+a01∆x∆h+a11∆h2 . (1)

Here, ∆x= x− x̂ is the midpoint (or shot) coordinate and ∆h= h− ĥ the offset coordinate relative to the in-
terpolated trace. The parameters b0 and b1 represent the local dips in midpoint (or shot) and offset direction,
respectively. They are related to the wavefront (ray) direction at the shot and receiver positions of the inter-
polated trace by the near surface velocity. The second-order derivatives a00, a01 and a11 determine together
with the dips b0 and b1 the local curvatures of a reflection event. They can also be related to the wave-
front curvatures of different observation configurations (common-shot, common-receiver or a hypothetical
common-midpoint experiment) (Zhang et al., 2001).
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Practical application

In practice, we consider each sample t̂ of an interpolated trace as part of a potential reflection event. This
means that an iso-phase surface has to be fit to each sample regardless of whether an actual reflection
event passes through the point or not. For the fit, we calculate the coherence (semblance) along surfaces
constructed for different parameter sets (b0, b1, a00, a11, a01) and choose the one with the highest coherence.
This implementation requires the determination of the five unknown parameters which is both nontrivial
and costly. Instead of a five-parameter global search optimization we choose to split the search into several
steps and to perform a full search of the parameters at each step. To explain these different steps let us
consider an arbitrary chosen constant offset ĥ.

Step 1. The first step consists in using formula (1) in each (CS or CMP) gather of the prestack data. For one
gather formula (1) reduces to

t(∆h) = t̂+b1∆h+a11∆h2 . (2)

The two unknown parameters b1 and a11 can be estimated either by two one-parametric searches or a single
two-parameter search using one gather. Performing the search for all gathers (i.e. for all CS or CMP posi-
tions) along the profile, we estimate the parameters b1 and a11 for each sample of the traces pertaining to the
offset ĥ. A subsequent local stack along the curves given by eq. (2) in each gather provides a common-offset
section for the offset ĥ.
Step 2. At the second step we use this simulated common-offset section as input data for the search of b0
and a00 by using formula (1) for one offset:

t(∆x) = t̂+b0∆x+a00∆x2 . (3)

Again, we can use either two one-parameter searches or a single two-parameter search for a sample t̂. In
general, two one-parameter searches are sufficient at this stage because the input common-offset section is
provided by a local stack, hence, with better signal-to-noise ratio than the prestack data.
Step 3. The third step consists in determining the remaining unknown parameter a01 for each sample t̂
of every trace for the chosen offset ĥ. Therefore, we use formula (1) in the prestack data with the known
parameters b0, a00, b1 and a11 from the first and second step in order to derive the mixed derivative a01 by a
one-parameter search.

Repeating this procedure for different common offsets we obtain a grid that is chosen in offset direction
and predetermined by the input CMP or CS gathers of the prestack data. Every sample of each trace on this
grid point now carries the information of the local second-order approximation by means of the parameters.
Note, that the grid spacing for the search should stay reasonable. One will not acquire new information
by searching on a grid that is so fine that neighboring grid traces use the same data traces for the search.
Therefore, we use a grid spacing in offset direction that has the same order of an average trace distance in a
CS or CMP gather of the data. However, the obtained grid must not be the final one if the offset spacing is
to sparse or an interpolation between CS or CMP gathers is desired. Let us consider the desired output grid
which does not necessarily coincide with the search grid. Firstly, we interpolate the parameters estimated on
the sparse search grid to the finer output grid. Finally, the parameters on the output grid are used to construct
locally the surfaces along which we perform a weighted stack to interpolate the traces on the output grid. A
weighted stack within a small aperture respects the local behavior of the prestack data and preserves the local
information. Stacking along a larger aperture clearly increases the signal-to-noise ratio and can be used for
signal enhancement. Information on local dips, curvatures and coherency, is available from the parameters
and can be used for different applications.

Examples

We illustrate two applications of the proposed interpolation method on real data and investigate the effect of
using different parameter estimation strategies in the first step, namely, two one-parameter searches versus



one two-parameter search. The parameter search grid spacing in offset direction was 100m, and the output
trace spacing in offset direction was chosen 25m. The final local stack for interpolation uses only three
neighboring traces in the data. For the illustration, we confine ourselves to the interpolation result for one
CMP gather.
Figure 1a) shows a CMP gather of the prestack data. Figures 1b) and c) show the interpolation results using
a separate and a simultaneous parameter search for the parameters b1 and a11, respectively. One can observe
regions where the interpolation using a separate parameter search provides less good results compared to
the simultaneous search. The reason is connected to an inaccurate dip estimation (parameter b1). For sparse
data, the advantage of simultaneous dip and curvature search is even more obvious. Figure 2a) illustrates a
CMP gather with large gaps between the traces. Figures 2b) and c) show the results of the interpolation using
a separate and a simultaneous search, respectively. A large search aperture is required in order to get enough
input traces for the parameter search. However, the assumption of a linear behavior of the reflection events
in such a large aperture is no longer valid. Therefore, a single dip estimation can not afford this situation.
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Figure 1: real data example: a) original CMP gather of the prestack data, b) interpolated CMP gather using a
separate search of the parameters b1 and a11 in the first step, c) interpolated CMP gather using a simultaneous
search of the parameters b1 and a11 in the first step.
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Figure 2: real data example with large gaps: a) original CMP gather of the prestack data, b) interpolated
CMP gather using a separate search of the parameters b1 and a11 in the first step, c) interpolated CMP
gather using a simultaneous search of the parameters b1 and a11 in the first step.
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Conclusions

The proposed interpolation method is based on an accurate estimation of local properties of the prestack data.
It is achieved by using a local second order approximation for seismic events. Therefore, we do not assume
global hyperbolicity of coherent seismic events in CMP domain. A simultaneous two-parameter search of
local dip and curvature in a single CMP or CS gather allows to increase the aperture for the search. This is
computational more expensive, but provides more stable and reliable results on the estimated parameters. It
is especially important for noisy and sparse data.
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