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ABSTRACT
In common-reflection-surface imaging the reflection arrival time field is parameterized
by operators that are of higher dimension or order than in conventional methods.
Using the common-reflection-surface approach locally in the unmigrated prestack
data domain opens a potential for trace regularization and interpolation. In most
data interpolation methods based on local coherency estimation, a single operator is
designed for a target sample and the output amplitude is defined as a weighted average
along the operator. This approach may fail in presence of interfering events or strong
amplitude and phase variations. In this paper we introduce an alternative scheme in
which there is no need for an operator to be defined at the target sample itself. Instead,
the amplitude at a target sample is constructed from multiple operators estimated at
different positions. In this case one operator may contribute to the construction of
several target samples. Vice versa, a target sample might receive contributions from
different operators. Operators are determined on a grid which can be sparser than the
output grid. This allows to dramatically decrease the computational costs. In addition,
the use of multiple operators for a single target sample stabilizes the interpolation
results and implicitly allows several contributions in case of interfering events. Due to
the considerable computational expense, common-reflection-surface interpolation is
limited to work in subsets of the prestack data. We present the general workflow of a
common-reflection-surface-based regularization/interpolation for 3D data volumes.
This workflow has been applied to an OBC common-receiver volume and binned
common-offset subsets of a 3D marine data set. The impact of a common-reflection-
surface regularization is demonstrated by means of a subsequent time migration. In
comparison to the time migrations of the original and DMO-interpolated data, the
results show particular improvements in view of the continuity of reflections events.
This gain is confirmed by an automatic picking of a horizon in the stacked time
migrations.

INTRODUCTION

Different interpolation strategies have been investigated and
used in the past: linear prediction error filtering (Spitz 1991),
Fourier reconstruction (Sacchi and Ulrych 1996) or Radon

∗
E-mail: german.hoecht@univ-pau.fr

‡Formerly Geophysical Institute Karlsruhe, Germany

transform (Trad 2003) are among the most popular ones.
These techniques are based on the decomposition of the local
wavefield in a transformed domain (Thorson and Claerbout
1985; Hugonnet and Canadas 1997; Kao 1997). After analysis
and processing the inverse transformation restores the wave-
field on the desired output grid. These methods use different
assumptions and work in different data domains. However,
they can suffer from sparse and irregular data geometries and
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require additional efforts to account for this problem (Xu
et al. 2005).

In this paper we present an interpolation based on the
common-reflection-surface (CRS) approach which uses at-
tributes that describe the kinematics of the measured wavefield
(Jäger et al. 2001; Zhang et al. 2001). These attributes repre-
sent parameters that are estimated from the data by means of
a second-order approximation of the reflection traveltimes in
the time domain. The CRS technique is mostly known for
its application to produce a zero-offset (ZO) stack (Jäger
et al. 2001). Here, the estimated parameters can be subse-
quently utilized for a tomographic velocity model inversion
(Duveneck 2004; Della Moretta et al. 2006). For the ZO CRS
application the traveltimes of reflection events are approxi-
mated in the vicinity of a ZO reflection associated with a nor-
mal ray. A more general approach is given by the common-
offset (CO) CRS (Zhang et al. 2001), which allows to ap-
proximate traveltimes of reflection events in the vicinity of
arbitrary central rays and, thus, at arbitrary offsets. The CRS
theory can in fact easily be extended to any dimension and
acquisition geometry when interpreting the CRS operator as
a local second-order traveltime approximation of reflection
events. In this paper we use this local description for the pur-
pose of trace interpolation. In addition to the published CRS
interpolation scheme (Hoecht et al. 2004; Hoecht and Ricarte
2006a), we introduce a so-called operator-oriented technique
which is particularly suited for a CRS-type imaging scheme
(Hoecht and Ricarte 2006b). The aim of this approach is
to avoid the definition of an operator at an output sample
as required by a standard scheme to which we refer to as
target-oriented scheme. The new approach makes use of the
redundancy of CRS operators in the data space and implicitly
allows to define several operators per target sample.

Figure 1 Interpolation in a 3D data space (t, x, y): the data traces are illustrated in black, the target trace to be interpolated is shown in green.
The operator given by equation (1) for a sample of the target trace is shown in dark red.

We present the general workflow and the implementation
of a CRS interpolation and give a detailed introduction to the
operator-oriented scheme. This new technique is compared
to the target-oriented scheme with respect to theoretical and
practical aspects. The operator-oriented scheme has been ap-
plied in order to regularize an ocean bottom cable (OBC)
common-receiver volume and common-offset subsets of a 3D
marine data set. We refer to these subsets as common-offset
classes. They are built using a binning in offset so that the off-
set variations within a class is limited by a chosen bin size in
offset. In the latter application, we focus on the impact of the
regularization on the quality of subsequent post-processing
steps. For that purpose, we compare time-migrated common-
offset classes of the original and regularized data and bench-
mark the results with a dip moveout (DMO) regularization.

B A S I C S

CRS-based interpolation works in the time domain and is
based on the estimation of local kinematic attributes of the
wavefield. It makes use of a local second-order traveltime
approximation and can be applied to any data where locally
coherent events are present. Although theoretically possible
for any data dimension, we restrict ourselves to a 3D data
space in the following.

Figure 1 shows some data traces (black) and a target trace
(green) which is to be generated in a 3D data cube. The general
idea of the interpolation scheme is to extract local information
from the existing measured traces and to use this information
to construct a new, interpolated trace.

The operator for a sample t̂ of the target trace located at
(x̂, ŷ) is given by the following local parabolic second-order
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traveltime approximation:

�t = t(�x,�y) − t̂ = b0 �x + b1 �y + a00 �x2

+ a01 �x�y + a11 �y2 .
(1)

Here, the traveltime difference � t describes the moveout of
a reflection event relative to the investigated sample t̂ of the
target trace. The variables �x = x − x̂ and �y = y − ŷ denote
the positions (x, y) of the data traces relative to the target
trace located at (x̂, ŷ). The parameters b0, b1 are the first-
order, a00, a01, a11 are the second-order spatial traveltime
derivatives, respectively. For 2D acquisition, these parameters
can be related to wavefront orientations and curvatures of
different observation configurations (common-shot, common-
receiver, and a hypothetical common-midpoint experiment,
see Zhang et al. (2001)).

An operator given by equation (1) is involved twice in the
interpolation procedure: firstly, we need to estimate it from
the data, and secondly, we perform a (weighted) stack along
it to simulate the amplitude at a sample of the target trace.
However, to reduce the computational cost it is essential to
estimate the operators on a coarse grid. Therefore, we define
three different grids in the data space: the data grid, the pa-
rameter grid and the target grid. These grids are intended to
define the positions of different types of traces. The (irregular)
data grid is defined by the locations of the actually acquired
data traces. The parameter grid defines the location of param-
eter traces where the operators are estimated for each sample.
The target grid is a chosen grid and carries the target traces
where the wavefield needs to be simulated. We will refer to
the samples of the different data traces, parameter traces, and
target traces as data samples, parameter samples, and target
samples.

Figure 2 Estimation of the parameters b1 and a11 for a sample of a parameter trace (blue) within a bin in x-direction. The estimated operator
is shown in red.

After the estimation of the operators on the parameter
grid an operator is defined by a parameter set (b0, b1, a00,
a01, a11) at a parameter sample t̂. For the final interpo-
lation it is necessary to define the operators at the target
traces. For that purpose, existing schemes interpolate the pa-
rameters from the parameter traces to the target traces. We
will refer to this technique as target-oriented (TO) scheme
and introduce an alternative operator-oriented (OO) scheme
which, among other things, avoids the drawbacks of a pa-
rameter interpolation. In the following we discuss the differ-
ent steps involved in the parameter estimation and interpola-
tion. Afterwards, we present and compare the TO and OO
schemes.

IMPLEMENTATION

Estimation of parameters

For the kinematic description of locally coherent events by
means of equation (1) we create parameter traces at chosen po-
sitions. The five parameters that define an operator have to be
estimated for each sample of these parameter traces. However,
the ideal solution of a simultaneous five-parameter estimation
is computationally too expensive. There are different ways to
determine the five parameters of equation (1) separately. One
way is to firstly neglect the second-order terms and to start
with a linear (plane) operator (i.e., to reduce the operator in
the order) and to estimate the second-order terms afterwards.
Another approach is to limit the operator in dimensions and
to estimate the parameters in various subsets. Both strate-
gies have their advantages and disadvantages. A limitation in
the order does not require subsets and treats all dimensions
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Figure 3 Estimation of the parameters b0 and a00 for a sample of a parameter trace (blue) within a bin in y-direction. The estimated operator
is shown in red.

Figure 4 Estimation of the parameter a01 for a sample of a parameter trace (blue) within the data volume. The final operator is shown in red.

simultaneously but is more susceptible to aliasing in one of
the dimensions. Constraining the dimensions keeps the order
of approximation but has the disadvantage that data subsets
are considered independently. Both approaches decrease the
stability and continuity of the parameters. The choice among
these approaches remains a compromise and will in general
depend on the data geometry. Our choice here is to maintain
the second-order terms and to estimate the parameters using
different subsets of the data space. Due to the data irregu-
larities and the parameter estimation in subsets, the data are
binned in both spatial dimensions of the data volume. Note
that this binning does not change the trace coordinates but
serves to group the data traces. Within the binned data grid
we choose the parameter grid which is in general coarser than
the data grid. Figure 2 shows the position of a parameter trace
(blue) in the data volume.

Step 1: two-parameter estimation in first bin direction

In the first step we fix one of the two spatial coordinates.
Setting x = x̂ we consider a (binned) 2D section of the data
in which the surface described by equation (1) reduces to a
curve:

t(�y) = t̂ + b1 �y + a11 �y2 . (2)

Here, �y denotes the relative coordinates of the data traces
to a parameter trace within the 2D section. The irregularities
in the orthogonal direction �x of the involved data traces are
neglected in equation (2). However, this error is constrained
by the bin spacing in x-direction. The operator of equation (2)
serves to describe the kinematics of the reflection events and
has to be estimated from the data for each time sample t̂ of the
parameter trace. This is done by simultaneous variation of
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Figure 5 Position of a target trace (green) and three enclosing parameter traces (blue). The parameters allow to construct the operators at the
parameter traces but these are required at the target trace.

Figure 6 a) operator (dashed curve) for a sample (gray dot) of the target trace (gray). For CRS interpolation only the amplitudes from the
enclosing traces are involved. For the displayed 2D case the amplitudes along the solid part of the operator are used. b) triangulation of the data
traces in case of a 3D geometry. The positions of the data traces are displayed by black dots, the position of the target trace is illustrated by a
gray cross. For interpolation, the amplitudes from the three traces of the triangle (gray) enclosing the target trace are involved.

the parameters (b1, a11) and coherency analysis along the
operator for each parameter set (b1, a11). The operator yield-
ing the highest coherency is selected and defines the parameter
set (b1, a11) for the respective time sample t̂ (Fig. 2).

Step 2: two-parameter estimation in second bin direction

Analogously to the first step, we perform a simultaneous
two-parameter estimation in the second spatial bin direction
(Fig. 3). Therefore, we set y = ŷ which reduces equation (1)
to the curve

t(�x) = t̂ + b0 �x + a00 �x2 . (3)

Again, the parameters b0 and a00 are determined for each
sample of the parameter trace. Here, we neglect the spatial
deviation �y of the involved data traces. Note that step one
and two are independent of each other and, thus, permutable.

Step 3: one-parameter estimation along surface

Once the parameters b0, b1, a00, and a11 are available for a
sample t̂ of a parameter trace the mixed second-order travel-
time derivative a01 can be estimated using the surface given by
equation (1). In this one-parameter estimation we consider the
data traces within a two-dimensional aperture. Here, the true
data coordinates (without any binning restrictions) are em-
ployed. Figure 4 illustrates the involved operator for a sample
of a parameter trace.

Interpolation

Because the parameter grid and the target grid can be differ-
ent, we have to define operators at the target traces based
on the operators estimated at the parameter traces. Figure 5
illustrates a possible configuration of a target trace, the data
traces and three parameter traces.
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Figure 7 Illustration of the TO and OO schemes. a) TO scheme: the operator (light gray) is constructed at the target sample (light gray dot) after
interpolation of the parameters from the samples (dark gray dots) of the enclosing parameter traces (dark gray). b) OO scheme: the operator is
constructed at a sample of a parameter trace and intersects the target trace near a target sample (light gray dot). To match the target sample the
operator is shifted in time (dark gray curve).

Figure 8 OO scheme: contributions to the same target sample from different parameter traces. In both figures, the operator (dashed gray curve)
is constructed at a parameter sample (dark gray dot). The time-shifted operator for a target sample (light gray dot) is shown as solid gray curve.

Operator construction

In order to define the operators at a target trace we distinguish
between two schemes: a TO scheme and an OO scheme. For
the TO scheme the parameters are interpolated to the tar-
get trace. Subsequently, these interpolated parameters can be
employed to construct the operator at the target sample ac-
cording to equation (1). This results in one single operator per
target sample.

In contrast, in the OO scheme the operator is directly con-
structed at a sample of the parameter trace. The intersection
point of the operator with a target trace defines an operator
for the respective sample of the target trace. In this scheme
several operators can contribute to the same target sample.

Trace interpolation

Let us assume that an operator is available at a target sample.
For the actual interpolation of the seismic, the amplitudes of
the data traces are summed along the operator and assigned to

the sample of a target trace as illustrated in Fig. 1. However,
we only involve data traces in the neighborhood of a target
trace to preserve the local character of the data. In addition,
the amplitude contributions are weighted according to their
distances to the target traces. Figure 6(a) illustrates the inter-
polation scheme for the 2D case. The target trace is located
between two data traces and shown together with the opera-
tor for a target sample. For the interpolation we use only the
two neighboring data samples defined by the operator. The
3D case requires a more complex handling. Here, we involve
a triangulation of the data geometry to determine three data
traces that enclose the target trace (Fig. 6b).

This principle is applied in the TO as well as in the OO
scheme: a contributing operator provides a weighted summa-
tion of amplitudes from the data traces that enclose the target
trace. Because several operators can contribute to a target
sample in the OO scheme, the sum of the individual oper-
ator contributions is divided by the number of contributing
operators.
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Figure 9 Comparison of the TO scheme (left) and the OO scheme (right). a-b) for a single reflection event and a dense parameter grid, both
schemes provide similar operators (solid curves) at the target sample (light gray dot). c-d) in case of a coarse parameter grid, an interfering event
may easily provoke inconsistent parameter interpolation in the TO scheme, whereas the OO scheme still provides a correct operator at the
target sample. Note that for clarity, the operators estimated at the parameter samples (dashed gray curves) are only shown for the TO scheme.
All contributing operators are displayed for the OO scheme: in case of Fig. (b), where both parameter traces contribute, the operators visually
match in the shown range.

Figure 10 Conflicting dip situation: a) the TO scheme uses only contributions from a single operator (gray curve) and, thereby, from one
reflection event whereas b) the OO scheme collects contributions from both reflection events. Again, all contributing operators in the OO
scheme are displayed. They visually match perfectly along the two events.

TARGET- A ND OPERATOR-ORIENTED
SCHEMES

As described above, we distinguish between a parameter grid
and a target grid. The operators (equation (1)) estimated for
each sample of the parameter traces have now to be defined

for samples of the target traces. In the following we com-
pare two schemes which differ in the way the operators from
the parameter traces are assigned to the target traces. We
firstly describe the commonly used TO scheme and afterwards
introduce the OO scheme. For their explanation it is suffi-
cient to consider the interpolation within a 2D seismic gather.
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Figure 11 Sigsbee data: a) subset of the common-offset section for offset 1212 m with three parameter traces illustrated in gray. The target trace
coincides with the central parameter trace depicted in light gray. b) related search ranges for the three parameter traces: the operators of the
different parameter traces are estimated in different overlapping subsets. One operator (curve) per parameter trace is shown exemplarily for a
sample.

Figure 7 shows a subset of such a gather together with the
positions of a target trace and its enclosing parameter traces.

Target-oriented scheme

Figure 7(a) illustrates the TO scheme. The operators defined
at the parameter traces are illustrated for two samples of the
parameter traces. In the TO scheme we interpolate the pa-
rameters from the neighboring parameter traces to the tar-
get trace and thereby construct a parameter trace at the tar-
get position. The interpolation of parameters is done by a
distance-weighted linear interpolation of the enclosing param-
eter traces. The resulting parameters define a unique operator
for each sample of the target trace as illustrated for one target
sample in the figure.

This principle analogously applies to a 3D data volume
(t, x, y) where we involve the three parameter traces enclosing
the target trace for the parameter interpolation. Note that
in case of coincident parameter traces and target traces, no
interpolation of the parameters is required.

Operator-oriented scheme

In contrast to the TO scheme, the OO scheme does not involve
the interpolation of parameters but here we directly construct
the operator at a sample of a parameter trace. Figure 7(b)
shows a sample of a parameter trace and the corresponding
operator. To make use of this operator for a target trace, we
firstly compute its intersection point with the target trace. Sub-
sequently, the operator is shifted in time from the intersection
point to a neighboring target sample (Fig. 7b).
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Figure 12 Sigsbee data: contributing operators for different target samples in a common-offset section for offset 1212 m. Each row of pictures
investigates a different target sample found at the intersection of the operators with the target trace (light gray). The TO scheme is confined to
the operators from the coincident parameter trace (middle column), whereas the OO scheme involves all operators.

In the OO scheme each sample of a parameter defines an
operator and individually contributes to a target trace. There-
fore, we can involve other parameter traces in addition to the
parameter traces enclosing the target trace. Figure 8 shows the
contributions from such additional parameter traces to the
same target sample. Although the operators can stem from
more distant parameter traces, the amplitudes used for the

actual interpolation of the target trace are always taken from
its enclosing data traces.

The OO scheme can be applied in a similar manner for data
of higher dimension. In case of a 3D data volume (t, x, y) the
operators form surfaces as given by equation (1) so that a
target trace can receive contributions from parameter traces
located in any spatial direction.
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Figure 13 OBC data: a) geometry of the 3D common receiver gather. The gray cross represents the receiver position, the shot positions are
denoted by black dots. The gray dots indicates the selected line displayed in the bottom; b) irregularities of the actual shots (black) and the
positions of the interpolated shots (gray) along the selected line.

In the following, we discuss the differences between the
two schemes and illustrate the impact of using more distant
parameter traces in case of a complex wavefield as present in
the Sigsbee 2A data set from the SMAART consortium.

Comparison of the TO scheme and the OO scheme

To point out the major differences between the two schemes
we analyze the operators for a target sample within a seismic
section that contains two crossing events (Figs 9 and 10).

Figures 9(a) and 9(c) illustrate the TO scheme where the
parameters are interpolated to the target sample. For the time
associated with the target sample the operators attached to
the parameter traces are displayed: in Fig. 9(a) the parameter
traces are located close to the target trace and provide similar
operators. Therefore, a parameter interpolation to the target
sample yields an operator that fits the reflection event. In
Fig. 9(c) we increase the distance between parameter traces
and the target trace. While the parameter trace on the left
would provide a reasonable operator for the target sample,
the parameter trace on the right defines an operator that fol-
lows the second event. The discrepancy between both opera-
tors results in an inappropriate operator at the target sample.

This example illustrates the weakness of the parameter inter-
polation required for the TO scheme.

The OO scheme only allows contributions from operators
that intersect the target trace close to the target sample. In
case of a dense parameter grid as illustrated in Fig. 9(b), both
parameter traces contribute to the target trace and provide
almost the same operator at the target sample. In case of a
sparse grid as illustrated in Fig. 9(d), only an operator from
a sample of the left parameter trace contributes to the tar-
get sample. The right parameter trace does not provide any
operator intersecting the target trace close to the target sam-
ple. Although the number of contributing operators reduces
in case of a coarser grid, a suited operator is still available
through the contribution from the left parameter trace.

Figures 10 shows a conflicting dip situation. For the TO
approach shown in Fig. 10(a) we use a coincident parameter
and target trace. Here, the single operator for a target sample
follows the reflection event with the higher coherency. Figure
10(b) shows the operators from different parameter traces
that contribute to the target sample in the OO scheme. Here,
the operators that contribute to the target sample cover both
reflection events. However, the number of operators from the
two events can differ providing a biased result.
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Figure 14 OBC data: data and interpolation results between existing traces: a) original data, b) TO interpolation, c) OO interpolation,
d) difference of both interpolation results, e) OO interpolation: number of contributing operators per target sample.

Operators for a synthetic data example

Let us illustrate the impact of the OO scheme in case of com-
plex synthetic data. Figure 11(a) shows a subset of a common-
offset section from the Sigsbee 2A data set. Within this section
we place three parameter traces one of which coincides with
the target trace. For the estimation of the operators at the

parameter traces we choose a symmetric aperture centered at
the respective parameter trace. Accordingly, the three param-
eter traces use different data traces for the estimation of the
parameters as shown in Fig. 11(b). For the analysis of the
whole section it is reasonable to use overlapping apertures.
It is important to note that the target trace is located within
the respective aperture of each of the three parameter traces.
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Figure 15 Marine data: a) midpoint geometry of the chosen offset class; b) section extracted along the line indicated by the bold dots in (a).

The TO scheme for the center target trace uses only the data
subset shown in the middle of Fig. 11(b). In contrast, the OO
scheme makes use of all three subsets, thus, offering different
views to the target trace.

Let us now consider the effect of the different apertures
for a chosen target trace by investigating the operators for
some samples of this trace. Figure 12 shows the operators
for four selected target samples. In the TO scheme, it is evi-
dent that the coincident target/parameter trace shown in the
middle column of Fig. 12 yields only one operator per target
sample. Additionally using the neighboring parameter traces
in the OO scheme, we observe additional contributions to

the target samples as shown in the left and right columns of
Fig. 12. These operators may either follow the same locally
coherent event as the operator attached to the central param-
eter trace like in Fig. 12(c), or they may provide contributions
from other coherent events as shown in Fig. 12(a). In some
cases these additional operators can hardly be identified at
the target sample itself as for the steeply dipping event in
Fig. 12(d) right. Figure 12(b) shows a situation where the op-
erator estimated at the target trace does not follow an actual
reflection event and, thus, causes an unwanted contribution
to the target sample. The contributions from the enclosing
parameter traces reduce its impact on the result.
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Figure 16 Marine data: midpoint geometries of a) the coincident target and TO parameter grid (gray dots) and b) the OO parameter grid
(gray crosses). The original trace locations are represented by black dots, the selected line is depicted by bold black dots (irregular) and the
corresponding positions of target traces (bold gray dots).

Summary

Due to the interpolation of parameters in the TO scheme to
construct the operator at the target trace, this scheme requires
a dense parameter grid. This restriction is considerably eased
in the OO scheme where the operators are directly constructed
at the parameter samples and are used independently. A coarse
parameter grid is especially attractive in view of the computa-
tion time.

In general, one operator per target sample is involved in the
TO scheme and all information relies on the accuracy of this
operator. The OO scheme comprises the information of sev-
eral operators and is based on constructive contributions from
different parameter traces. Although this may have a smooth-
ing effect, it stabilizes the interpolation result. Theoretically,

we may find situations where no operators contribute to a tar-
get sample in the OO scheme. However, such circumstances
are not expected along coherent events.

Both schemes do not handle conflicting dips situations prop-
erly. A ‘proper’ handling of conflicting dip situations requires
to identify the different events in terms of kinematics and
waveform. For the TO scheme, multiple operators would have
to be estimated for this purpose. This involves more compu-
tational time and a sophisticated separation of the reflection
events based on non-trivial rules that define signal, noise, and
resolution. In the OO scheme multiple operators for a tar-
get sample are implicitly provided. However, because we do
not select among the contributing operators the contributions
may be unbalanced.
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Figure 17 Marine data: data and interpolation results: a) original data, b) TO interpolation, c) OO interpolation, d) difference of both
interpolation results. e) OO interpolation: number of contributing operators per target sample.

APPLICATION

Two major items are addressed here. Firstly, we want to
demonstrate the effect of the OO scheme in practice. For this
purpose, we compare the results with those obtained with the
TO scheme for real data. Secondly, we investigate an appli-
cation of the OO scheme with subsequent post-processing. In
the latter application, we focus on the impact of a regulariza-
tion on time migration and compare the results to a standard
DMO regularization.

Comparisons of the TO and OO schemes for interpolation

For comparison of the two methods, we applied the TO and
the OO CRS-based interpolation schemes to two data sets: a

common-receiver gather extracted from a 3D OBC data set
and a common-offset class extracted from a marine 3D single-
azimuth data set. Both data sets are irregular and represent
3D data volumes. Our aim was to regularize and interpolate
these data.

Interpolation of a 3D OBC common-receiver gather

Figure 13(a) shows the geometry of a 3D OBC common-
receiver gather. In the following we will investigate a se-
lected line which provides an irregular trace spacing in inline
and crossline direction (Fig. 13b). The average trace spac-
ing of the data is 50 m in both inline and crossline direction.
The target was to regularize and interpolate the data to a
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Figure 18 Marine data: time slices at 2.2 s of the two time-migrated common-offset classes 400 m (left) and 1500 m (right): a) original data;
b) DMO-interpolated data; c) CRS-interpolated data.

regular trace spacing of 25 m × 25 m. For the TO interpola-
tion a dense parameter grid of 50 m × 50 m has been chosen.
For the OO interpolation the parameter grid was set to 200 m
× 200m, which reduces the computational expense for the
parameter estimation by a factor of 16.

Figure 14 shows the original data traces and the interpo-
lation results. For the latter, we display only traces that are
located in between the average data grid. As one can observe,
the results of the TO interpolation (Fig. 14b) and the OO in-
terpolation (Fig. 14c) are almost identical. This is confirmed
by the difference section shown in Fig. 14(d). This example
is well defined for the TO scheme because there are no large
gaps and no crossing events, so that we do not expect any
improvements with the OO scheme. However, it confirms the
reliability and stability of the OO scheme. Although we use a
coarser parameter grid and several operators per target sample
(Fig. 14e) we obtain virtually the same result.

Interpolation of a 3D common-offset class

In this example we investigate the two schemes of CRS-based
interpolation on a 3D single-azimuth common offset class.
Figure 15(a) shows the midpoint geometry of the common-
offset class with an offset range of 1450–1499 m. Figure 15(b)
illustrates a selected line of this class. The trace spacing reflects
the inline irregularities.

Figure 16 shows the midpoint geometries of the target grid
(25 m × 25 m) that coincides with the TO parameter grid, and
of the coarse OO parameter grid (100 m × 100 m). The OO
parameter grid is defined by every fourth parameter trace of
the TO grid in each direction, again reducing the computa-
tional cost by a factor of 16. For the parameter estimation,
the data has been binned to a 25 m × 12.5 m grid.

Figure 17 shows the original data and the interpolation re-
sults. We observe again similar results from the TO scheme
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Figure 19 Marine data: time slices at 4.77 s of the two time-migrated common-offset classes 400 m (left) and 1500 m (right): a) original data;
b) DMO-interpolated data; c) CRS-interpolated data.

and the OO scheme. This is confirmed by the difference sec-
tion shown in Fig. 17(d). The major differences appear in
regions where traces are missing in the data. Here, the OO in-
terpolation result shows a better continuity which is certainly
due to the use of several operators per target sample. Figure
17(e) shows the number of operators per target sample in the
OO scheme.

CRS regularization for migration

In the following we demonstrate the impact of trace interpo-
lation for migration. We now use the entire irregular marine
single-azimuth 3D data set which also served to extract the
common-offset class described in the preceding section. The
data set forms a four-dimensional space (t, x, y, h), where t
denotes time, h denotes the offset, and x, y denote the mid-
point coordinates in inline and crossline, respectively. Irreg-

ularities appear in all spatial dimensions. The bin sizes are
12.5 m in inline and 25 m in crossline.

Although the CRS interpolation is possible for any dimen-
sion, our implementation is currently limited to three dimen-
sions including time. Therefore, we choose to regularize the
midpoint geometry in common-offset classes where we define
a common-offset class by an offset bin of 100 m. In this man-
ner, the data was subdivided into 40 common-offset classes in
the offset range of 300–4200 m. Prior to the CRS interpola-
tion, we applied an NMO correction to reduce the impact of
the offset binning. An inverse NMO correction after the CRS-
based regularization constructs the regularized data. For com-
parison with a standard procedure we also applied a DMO
correction followed by an inverse DMO correction in order
to regularize the data. Finally, we time migrated the common-
offset classes of the original data set and the regularized data
sets.
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Figure 20 Marine data: subsets of an inline section from the time-migrated offset classes 400 m (left column) and 1500 m (right column):
a) original data; b) DMO-interpolated data; c) CRS-interpolated data.

Figures 18 and 19 show two time slices of two time-
migrated common-offset classes using the original data, the
DMO-regularized data, and the CRS-regularized data. Al-
though the used Kirchhoff-type migration does not require
regular input data, the results clearly illustrate the advantage
of regularization prior to time migration. The acquisition foot-
prints that appear in the time slice t = 2.2 s for the time migra-

tion of a near offset class for the original data and that persist
in the result from the DMO procedure have been successfully
removed by the CRS interpolation. Considering an inline sec-
tion and a crossline section (Figs 20 and 21) of these two time
migrated common-offset classes, we observe a significant im-
provement in continuity and definition of the events in the
time migrations of the CRS-regularized data.
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Figure 21 Marine data: subsets of a crossline section from the time-migrated offset classes 400 m (left column) and 1500 m (right column):
a) original data; b) DMO-interpolated data; c) CRS-interpolated data.

Figure 22 shows a common image gather extracted from the
time migrations of all 40 common-offset classes. Although the
common-offset classes have been processed independently by
the CRS interpolation and the time migration we also ob-
serve a better continuity and definition of the events in offset
direction.

To produce the final time-migration result, we stacked
the 40 time-migrated offset classes. Figures 23 and 24 show
the time slices, and the inline and crossline sections of the
stack. Here, the differences of the migrated results are less
obvious. The stacking process significantly reduces the fluc-
tuations present in the individual common-offset classes.
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Figure 22 Marine data: common-image gathers extracted from the center of the time-migration results: a) original data; b) DMO-interpolated
data; c) CRS-interpolated data.

However, we still observe a difference in terms of conti-
nuity as detected by an automatic picking of a horizon in
the stacked time-migration results. The picked surfaces along
a horizon in the three time-migration results are shown in
Fig. 25 together with the picks in selected cross-line sections.

The detected surface in the time-migrated data from DMO
interpolation considerably extends the surface picked in the
time-migrated original data. The time-migrated CRS interpo-
lation result offers the most complete reconstruction of the
horizon.
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Figure 23 Marine data: time slices at 2.2 s (left) and 4.77 s (right) through the time-migration results stacked over all offsets: a) original data;
b) DMO-interpolated data; c) CRS-interpolated data.

CONCLUSIONS

The presented CRS interpolation operates in the original
prestack data domain and accounts for irregular geometries.
A distinction to existing methods is the use of local operators
of the second order which are less sensitive to aliasing but
imply a considerable increase of the computational expense.
As a consequence CRS interpolation is limited to operate in
subsets of the prestack data.

For the CRS interpolation we introduced the operator-
oriented scheme, which, in distinction to a classical target-
oriented scheme, implicitly allows the contributions of several
operators for a target sample. With respect to conflicting dip
situations this adds information but does not solve them en-
tirely. Nevertheless, the object-oriented scheme avoids an ex-

pensive multi-operator estimation as would be required in
the target-oriented scheme for this purpose. Both schemes
provide similar results, however, in areas of uncertainties
in the parameter estimation the results from the operator-
oriented scheme show a better continuity of the events and
less noise. Additionally, the operator-oriented scheme is suited
for an estimation of parameters on a coarse parameter grid
which reduces the computational cost. The observed increase
in stability and reliability as well as the significant gain in
computation time make the operator-oriented scheme highly
attractive.

We demonstrated the efficiency of a CRS interpolation on
different types of real 3D data and showed the impact of
regularization on a subsequent time-migration. The observed
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Figure 24 Marine data: subsets of an inline section (left) and a crossline section (right) of the time-migration results stacked over all offsets:
a) original data; b) DMO-interpolated data; c) CRS-interpolated data.

improvements in continuity of the reflection events offer bet-
ter working conditions for a residual moveout analysis in the
migrated gathers as well as for automatic picking and interpre-
tation of reflection events. In our opinion, the computational
expense of a CRS interpolation is justified by the observed
benefit of subsequent processing schemes.
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Figure 25 Marine data: automatic picking of a horizon in the stacked time-migration results of the original data (left), DMO-interpolated data
(middle), and CRS-interpolated data (right). The detected surfaces are displayed in the top row together with a selected crossline shown in red;
the detected part within the indicated crossline section is illustrated by the magenta curve in the bottom row.
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Jäger R., Mann J., Höcht G. and Hubral P. 2001. Common-reflection-
surface stack: image and attributes. Geophysics 66, 97–109.

Kao C.-N. 1997. A trace interpolation method for spatially aliased
and irregularly spaced seismic data. 67th SEG meeting, Dallas,
Texas, USA, Expanded Abstracts, 1108–1110.

Hugonnet P. and Canadas G. 1997. Regridding of irregular data using
3-d radon decompositions. 67th SEG meeting, Dallas, Texas, USA,
Expanded Abstracts, 1111–1114.

Sacchi M.D. and Ulrych T.J. 1996. Estimation of the discrete Fourier
transform, a linear inversion approach. Geophysics 61, 1128–
1136.

C© 2009 European Association of Geoscientists & Engineers, Geophysical Prospecting, 57, 957–979



Common-reflection-surface-based interpolation 979

Spitz S. 1991. Seismic trace interpolation in the f -x domain. Geo-
physics 56, 785–794.

Thorson J.R. and Claerbout J.F. 1985. Velocity stack and slant
stochastic inversion. Geophysics 50, 2727–2741.

Trad D. 2003. Interpolation and multiple attenuation with migration
operators. Geophysics 68, 2043–2054.

Xu S., Zhang Y., Pham D. and Lambaré G. 2005. Antileakage fourier
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