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SUMMARY
Almost all implementations of ray based Kirchhoff prestack depth migration require a
smoothed version of the velocity function. However, most velocity model building tools fit
prestack traveltimes using blocky parameterizations with finite velocity jumps. This leads to
an inconsistent scheme, in the sense that the smoothed migration velocity model is
kinematically sub-optimal. Here, using a simple and efficient perturbation method, we show
and demonstrate how we can correct for the smoothing effect in Kirchhoff  PSDM.
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Introduction 

 Asymptotic ray theory is a powerful and fast method for modelling and imaging applications. 
The underlying assumptions are valid as long as we can represent seismic data as a combination of 
seismic events. However, the only way to perform ray based applications on a complex model is to 
smooth it. In a rough model, the ray paths and behaviours become chaotic (Tappert et al, 1996) and the 
number of multi-valued arrivals increases excessively. Even worse, some of these arrivals are 
physically implausible. Kirchhoff PSDM requires a reasonably smoothed velocity model to get stable 
paraxial quantities (traveltime, amplitude,…), to compute Green’s function quickly, and to reduce the 
error in the interpolation of traveltime tables. 

On the other hand, the velocity model is almost always provided by some velocity model builder using 
a blocky parameterization with finite velocity jumps. This leads us to an inconsistent scheme and some 
inaccuracies in traveltime tables. Here, we propose to overcome this effect by using a first order 
perturbation correction of the traveltime tables. The underlying idea of this approach is to use the 
smoothed version of the velocity model to perform ray tracing while the traveltimes are estimated on 
the basis of the original unsmoothed velocity model using the frozen ray path. In the following section, 
we present a short description of the theory and then we demonstrate the proposed method on synthetic 
and real data. 

Theory and Methodology 

A Hamiltonian formulation (Goldstein, 1980) simplifies considerably the mathematical 
analysis of seismic ray theory and the understanding of the physical problem (Burridge, 1976; 
Farra and Madariaga, 1987). Although not strictly necessary for the following, its relative 
simplicity and its elegance justify its use. We define the Hamiltonian of ray tracing problem as  

( ) ( )



 −= xupptpxH rrrrr 2.2

1,,τ  ,   (1) 

where u denotes the reciprocal of wave propagation velocity, the slowness vector pr is orthogonal 
to the wavefront and represents the spatial gradient of traveltime Tp ∇=

r
, and τ denotes a 

sampling parameter along the rays such as ( ) τdxuxdpdT rrr 2=⋅= . The evolution of the family 
of ray trajectories is defined by the canonical vector ( ) ( ) ( )( )τττ py ,x= , which satisfy the 
Hamilton-Jacobi canonical equations: 
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This system of ordinary differential equations is known as the ray tracing system and is much 
easier to solve numerically than equation (1). The traveltime T can be estimated by integrating the 
Lagrangian along the ray trajectory such that 
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Consider a reference smoothed model characterized by the slowness field ( )xu r
0  and associated 

Hamiltonian ( )[ ]xuppH t rrr 2

0002
1

0 . −= . Integrating the traveltime along the ray path 0R  associated 
with this reference model, we obtain 
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Now consider the unsmoothed original velocity modelu , which differs slightly from the reference 
smoothed model 0u , such that  uuu ∆+= 0 . This perturbation in slowness (the effect of 
smoothing in our case) produces a corresponding perturbation of the Hamiltonian HHH ∆+= 0  
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In case of first-order approximation, we can write ( )
p

H
p

HH
rr
∂
∂

≈
∂
∆+∂ 00  and so equation (5) 

simplifies to 
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Analyzing the second part of the second term in the upper equation and remembering that 

uuHH ∆∂∂=∆ , we obtain 
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Finally combining the previous equation and equation (3) the perturbed traveltime associated to 

the perturbed model (unsmoothed one) is: 
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Application  

The first preliminary test was to check/understand the effects of the velocity smoothing 
for a simple synthetic case, a flat reflector between two homogeneous velocity layers. We 
generated three 1D blocky models with increasing velocity contrast across the flat interface 
positioned at 1000 m in depth. Keeping the velocity of the first layer constant to 2000 m/s, we 
created the models that are characterized by 500 m/s, 1000 m/s and 2000 m/s velocity contrasts. 
Kirchhoff PSDM was applied with the same smoothing parameters (100 m for the radius of 
smoothing) and imaging. Figure .1. shows on the left CIG result from standard PSDM. The 
smoothing effect is evident with an increasing velocity contrast and it manifests itself in this 
example through a residual moveout and a depth shift error. On the right hand side of figure -1-, 
we show CIG result using traveltime perturbation method. In this case, the reflector remains 
centered at the correct position and stays almost flat at least up to a critical angle (shown with the 
star position). We denote also an asymmetric stretch compared to the ideal situation without any 
contrast (Middle of Figure -1-). This effect is related to the fact that the wavelet, centered across 
the interface, is influenced by different velocities: lower in the upper part (so less stretched) and 
higher in the lower part (and so more stretched).  

The second synthetic example is the well known SEG-EAGE salt dome. The results 
obtained with the two different approaches (no perturbations and perturbation of traveltimes) are 
shown in figure -2-. The main differences are in the top, bottom and some area around the salt 
body. Both the contacts between the salt body and the sediments are better imaged and positioned 
with the perturbation approach. Several authors showed similar results (on the same dataset) when 
they compared Kirchhoff PSDM results vs. wave equation PSDM and claim that this effect is due 
to the fact that their Kirchhoff imaging algorithm cannot handle multi-valued traveltime arrivals. 
Our result shows that it solely the effect of velocity model smoothing. Similar conclusion can be 
made, if we analyze and compare the flatness index (Figure .3.) for the two schemes. The flatness 
index map shows also that we will be more consistent with interpretation during the iterative 
velocity model building and that we can speed up the rate of convergence of this iterative strategy. 

Real dataset example: The chosen area is a complex structural sub-salt play. Several Salt 
domes and thin Salt bodies interfere with deformed sediment layers. Traveltime perturbation was 
tested vs. the standard scheme. The results are presented in figure -4-, where as it was expected, 
we can see the improvement of continuity and focusing for the top salt. Even more, we can notice  
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Figure 1: Comparison of Migrated CIG using standard PSDM (left) and perturbation correction (right) for 
different velocity contrast. In the middle, Ideal migrated CIG using a homogeneous velocity model is 
reported.  

 
Figure 2: Top :Depth image using the standard (without perturbation correction) PSDM. Bottom : Depth 
image using traveltime perturbation scheme. 

the improvement of the character and coherency of faults and structures above the salt body. 
 



 

 

 
Figure 3: Flatness indicator of CIG for the standard unperturbed scheme (left) perturbed scheme (right) 
White color correspond to flat events. 

 
Figure 4: Comparison of post migration stack using standard scheme (top) and the new traveltime 
perturbation scheme (bottom). 

 
 

Conclusions  

We demonstrate in this study how we can cope with smoothing effects in Kirchhoff depth imaging 
project. The proposed method comes almost without CPU overhead and can be extended to 
anisotropic media. 
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