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3D prediction of surface-related and interbed multiples

Moshe Reshef1, Shahar Arad2, and Evgeny Landa3

ABSTRACT

Multiple attenuation during data processing does not
guarantee a multiple-free final section. Multiple identifi-
cation plays an important role in seismic interpretation.
A target-oriented method for predicting 3D multiples
on stacked or migrated cubes in the time domain is pre-
sented. The method does not require detailed knowl-
edge of the subsurface geological model or access to
prestack data and is valid for both surface-related and
interbed multiples.

The computational procedure is based on kinematic
properties of the data and uses Fermat’s principle to de-
fine the multiples. Since no prestack data are required,
the method can calculate 3D multiples even when only
multi-2D survey data are available. The accuracy and
possible use of the method are demonstrated on syn-
thetic and real data examples.

INTRODUCTION

Although the concepts of multiple elimination are the same
for both 2D and 3D wavefields, the recent practice of 3D data
acquisition does not allow one to apply 3D algorithms directly
(van Dedem and Verschuur, 2002) because of the sparse-
ness and irregularity of the acquired data. Even when acquisi-
tion parameters are sufficient, the cost of applying a complete
3D multiple suppression procedure may prohibit its use. The
current practical implementations of multiple prediction and
adaptive subtraction are usually based on 2D approximations
(Berryhill and Kim, 1986; Wiggins, 1988; Verschuur et al.,
1992; Weglein et al., 1997) and therefore do not guarantee a
multiple-free seismic section. In addition, most of the avail-
able methods are designed to handle surface-related multiples
and ignore interbed multiples. Internal multiples are generally
more difficult to remove. The feedback method, which models
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internal multiples in terms of the actual medium and reflection
interfaces that are the sources of those events (Berkhout and
Verschuur, 1997), proceeds from one reflector down to the
next and removes all internal multiples that have their shal-
lowest reflection at that reflector.

The inverse scattering method for attenuating internal mul-
tiples is derived from the multiple prediction and subtrac-
tion subseries that reside within the multidimensional direct-
inversion methodology (Coates and Weglein, 1996). The cost
per reflector of the feedback method is roughly twice the
cost of the free-surface algorithm. The cost of the inverse-
scattering series approach to internal multiples attenuation is
considerably greater.

Development of methods that can recognize 3D multi-
ples on stacked or migrated sections and that do not re-
quire direct use of prestack data is of great importance to
seismic interpretation. This poststack approach to multiple
prediction is considered by Tsai (1985), Kelamis and Ver-
schuur (2000), and Levin (2002). They represent the earth as
a 1D stratified medium, and the corresponding stacked sec-
tion as a plane-wave response. Under these circumstances the
multiple-prediction process reduces to an autoconvolution of
each stacked trace. This single-trace poststack application is
limited because lateral subsurface variations cannot be incor-
porated in such a crude prediction method.

Reshef et al. (2003) present a 2D method for multiple pre-
diction that can be regarded as a poststack application (i.e.,
predicting zero-offset arrival times of the multiples, or T

(m)
0 ,

where T is traveltime). This method, which can predict both
surface-related and interbed multiples, is an intermediate so-
lution between a simple 1D single-trace autoconvolution and
a full prestack multiple prediction. In other words, the method
does not require direct use of prestack data but accounts for
lateral velocity variations in the subsurface. Despite the fact
that only poststack multiples need to be predicted, the appli-
cation of this method requires prestack traveltimes of primary
reflections from multiple generating interfaces. The necessary
prestack traveltimes can be calculated using zero-offset times
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and stacking velocities related to primary events — the multi-
ple generators. In this way the undesirable access of prestack
data can be avoided. The method predicts specific multiple
events and is highly suitable for interpretive work.

Our study extends the Reshef et al. (2003) method to the 3D
case. We show how the principles presented for the 2D case
predict 3D multiples without accessing prestack data. Some
practical implementation issues are described — in particular,
the use of Fermat’s principle in the prediction process. The
idea of using Fermat’s principle to predict surface multiples
is presented by Dragoset (2001). We generalize this idea and
show how it can be used for interbed multiple prediction. The
accuracy and suggested use of the method are demonstrated
with synthetic and real data examples.

PREDICTION METHOD

Except for the fact that an additional dimension is added,
the procedure we use to predict 3D multiples resembles the
2D case. A detailed description can be found in Reshef et al.
(2003).

As with the 2D case, we base our method on the fact that
each multiple, regardless of its type and complexity, consists of
segments that, from a surface perspective, are primary events
(Jakubowicz, 1998; Keydar et al., 1998). We start by pick-
ing primary events suspected of being multiple generators on
stacked or time-migrated cubes. These picked zero-offset trav-
eltimes are referred to as T0 surfaces. Given the stacking or
migration velocity function along the picked horizon/surface,
artificial prestack common-midpoint (CMP) traveltime curves
are calculated for each primary event. This procedure can
be regarded as destacking (Levin, 2002) and requires no ac-
cess to prestack data. It is based on the assumption that pri-
mary multiple-generator events are hyperbolic. This assump-
tion does not preclude the possibility of the multiples being
nonhyperbolic. The limitations introduced by the acquisition
pattern are alleviated. If the picked primary horizon covers
the entire survey extent, the analytically calculated primaries
can be generated everywhere to produce a perfectly ordered
(artificial) prestack data set.

Figure 1. Schematic raypath of a peg-leg multiple for a given
shot S and receiver R pair. The surface reflection point A does
not have to lie on the line connecting S and R.

These traveltimes are used to predict the prestack travel-
times of the multiples. Each multiple path is determined by a
specific multiple condition. A detailed description of the mul-
tiple condition and the concept of intermediate points can be
found in Keydar et al. (1998); Landa, Keydar et al. (1999) and
Landa, Belfer et al. (1999). To complete the poststack predic-
tion, the required multiple times T

(m)
0 are extracted from the

predicted prestack time curves. This method is valid for in-
terbed as well as for surface-related multiple prediction. If the
T0 surfaces are picked on time-migrated images, demigration
(Whitcombe, 1994) should be applied before generating the
prestack traveltimes. The predicted time surface in this case
should be time migrated to appropriately overlay the migrated
image. The extension of this algorithm to the 3D case requires
modification of the multiple conditions. In the following sec-
tion we describe the 3D multiple condition for the surface-
related and interbed options and the proposed computational
algorithm.

3D SURFACE-RELATED MULTIPLES

Figure 1 shows the raypath for a simple surface multiple
(peg-leg in this example). If we extend the multiple condi-
tion from the 2D to the 3D case, then at the surface point A

the emergence angle of the ray starting at the receiver (RCA)
must be equal and opposite in sign to the emergence angle of
the ray starting at the source (SBA). The multiple time (T12 in
this case) is given by the simple sum

T12 = TSBA + TRCA. (1)

If we assume that the primary reflection times from the up-
per reflector (L1 in Figure 1) and from the deeper reflector
(L2 in Figure 2) are available, then an areal search for point A
may be performed. In practice, assuming a flat acquisition sur-
face, two emergence angles (one with respect to the x-axis and
the other with respect to the y-axis) must be computed from
the given primary traveltimes. For a specific source-receiver
pair, a point A is searched with the requirement that the emer-
gence angle equality condition will be satisfied in both major
directions at A. In addition to the fact that the angle search
may become computationally expensive in the 3D case, some

Figure 2. Schematic raypath of an interbed multiple for a given
shot S and receiver R pair.
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inaccuracy may be introduced because emergence angles must
be calculated from the artificial traveltimes (Reshef et al.,
2003) or from prestack data (Landa, Keydar, et al., 1999).

An alternative way of finding A can be based on Fermat’s
principle (Dragoset, 2001). If we assume that the primary re-
flection paths SBA and RCA (see Figure 1) are minimum
timepaths, then given a fixed S and R there exists a point A∗ on
the surface that minimizes the sum of the primary traveltimes:

TSBA∗ + TRCA∗ = minA∈S1 (TSBA + TRCA), (2)

where s1 defines a set of coordinates on the free surface. The
minimum traveltime path SBACR (see Figure 1) is therefore
the multiple path that also satisfies the angle multiple condi-
tion at the surface reflection point A. If the surface-related
multiple is of a higher order, then additional primaries will
be calculated and more intermediate surface points will be
searched.

Our implementation differs from the one presented by
Dragoset in the way we extract the primary traveltimes.
Rather than calculating the prestack primary traveltimes by
forward modeling through a given subsurface model or by
picking events on prestack records (Dragoset, 2001), we
generate the prestack traveltimes by the abovementioned
destacking operation, using T0 picks on stacked (or time-
migrated) cubes and the related stacking (or migration) ve-
locity.

3D INTERBED MULTIPLES

Figure 2 represents the raypath of a simple interbed mul-
tiple. As in the 2D case, the multiple time (along the path
SCPDR) can be calculated from the traveltimes of three dif-
ferent primaries: SCB, RDA, and APB. Since point P, situated
on interface L1, is the crossing point of the primaries SCB and
RDA, we have to show that APB is also a primary reflection.
If line FF′ in Figure 2 is normal to L1 at P and the path CPD
is part of the interbed path, we get from the reflection law the
3D angle’s equality:

� CPF ′ = −� F ′PD. (3)

The refraction law at P for path CPB can be written as

sin( � CPF ′)
V+(XP , YP , Zp)

= sin( � FPB)
V−(XP , YP , ZP )

. (4)

For DPA is can be written as

sin( � F ′PD)
V+(XP , YP , ZP )

= sin( � FPA)
V−(XP , YP , ZP )

, (5)

where V+ and V− are the velocities from below and above L1,
respectively. By using equality 3 in equations 4 and 5, we get

� FPA = −� FPB, (6)

making APB a simple reflection path. The additional complex-
ity of the interbed case comes from the fact that our approach
is based on the analysis of surface-recorded data; point P (po-
sitioned on the subsurface reflector L1) cannot be determined

explicitly. Using a simple multiple condition similar to the one
used for the surface-related paths will require the expensive
operation of prestack datuming from the surface to L1. The
implicit determination of P dictates that for a given source-
receiver pair, two surface locations (A and B in Figure 2) must
be found (Landa, Keydar et al., 1999).

Given the three primary traveltimes and assuming a flat
recording surface, the prestack traveltime of the interbed mul-
tiple (TSR in Figure 2) can be written as a sum:

TSR = T (xA, yA, xB, yB) = TSCB + TRDA − TAPB. (7)

The multiple condition in this case (Keydar et al., 1998) re-
quires that the emergence angle of the reflection SCB be iden-
tical to the emergence angle of the reflection from the upper
interface APB (see red line in Figure 2). In the same way, the
emergence angle of RDA must be equal to the emergence an-
gle of BPA (see red line in Figure 2). If AH and BE are normal
to the surface (Figure 2), then from the multiple condition we
can define the following angle equalities:

� PBE = � CBE; � PAH = � DAH. (8)

Although the notation used in equation 8 commonly refers to
straight rays, the equality is valid for arbitrary velocity models
and for curved raypaths. It means that the emergence angles
at the surface of these raypaths are equal.

For simplicity we use the following angle notations:

� PBE = β; � CBE = β ′; � PAH = α; � DAH = α′.

(9)

Next, we use the angle equality (equation 8) to define the
ray parameter at A and B:

pAx = sin(αx)
VA

= sin(α′
x)

VA

⇒ ∂TRDA

∂x

∣
∣
∣
∣
x=xA

= ∂TAPB

∂x

∣
∣
∣
∣
x=xA

,

(10a)

pAy = sin(αy)
VA

= sin(α′
y)

VA

⇒ ∂TRDA

∂y

∣
∣
∣
∣
y=yA

= ∂TAPB

∂y

∣
∣
∣
∣
y=yA

,

(10b)

pBx = sin(βx)
VB

= sin(β ′
x)

VB

⇒ ∂TSCB

∂x

∣
∣
∣
∣
x=xB

= ∂TAPB

∂x

∣
∣
∣
∣
x=xB

,

(10c)

pBy = sin(βy)
VB

= sin(β ′
y)

VB

⇒ ∂TSCB

∂y

∣
∣
∣
∣
y=yB

= ∂TAPB

∂y

∣
∣
∣
∣
y=yB

.

(10d)

The traveltime along raypath SCB (TSCB) is independent of
A, and the traveltime along raypath RDA (TRDA) is indepen-
dent of B (see Figure 2). Therefore, when we calculate the
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derivatives of the interbed traveltime at these points, we get

∂TSR

∂x

∣
∣
∣
∣
x=xA

= ∂(TSCB + TRDA − TAPB)
∂x

∣
∣
∣
∣
x=xA

= ∂TRDA

∂x

∣
∣
∣
∣
x=xA

− ∂TAPB

∂x

∣
∣
∣
∣
x=xA

= 0, (11a)

∂TSR

∂y

∣
∣
∣
∣
y=yA

= ∂(TSCB + TRDA − TAPB)
∂y

∣
∣
∣
∣
y=yA

= ∂TRDA

∂y

∣
∣
∣
∣
y=yA

− ∂TAPB

∂y

∣
∣
∣
∣
y=yA

= 0, (11b)

∂TSR

∂x

∣
∣
∣
∣
x=xB

= ∂(TSCB + TRDA − TAPB)
∂x

∣
∣
∣
∣
x=xB

= ∂TSCB

∂x

∣
∣
∣
∣
x=xB

− ∂TAPB

∂x

∣
∣
∣
∣
x=xB

= 0, (11c)

∂TSR

∂y

∣
∣
∣
∣
y=yB

= ∂(TSCB + TRDA − TAPB)
∂y

∣
∣
∣
∣
y=yB

= ∂TSCB

∂y

∣
∣
∣
∣
y=yB

− ∂TAPB

∂y

∣
∣
∣
∣
y=yB

= 0. (11d)

If we can find two surface points A and
B that satisfy the four extremum condi-
tions given by equations 11, the interbed
multiple traveltime for the source-receiver
pair S–R can be calculated by equation 7.
In our implementation, the primary trav-
eltimes are generated analytically, and the
required derivatives are calculated after
the (artificial) data are sorted to common-
source records. For each source-receiver
pair, a scan radius is determined; at every
surface location within this radius, the ex-
tremum conditions are checked until the in-
termediate points A and B are found. If
no solution is found within the predefined
area, the scan radius can be increased to in-
clude more surface locations.

Different from the surface-related case,
Fermat’s principle is used here in its gen-
eral form. The multiple condition is given in
terms of the directional traveltime deriva-
tives rather than explicitly using the travel-
times.

EXAMPLES

A 3D synthetic model (Figure 3) is used
to test the prediction method. The model
covers an area of 12 × 6 km and consists of
two layers with a velocity of 1500 m/s above
the upper interface, 2000 m/s between the
interfaces, and 2500 m/s in the lower half-
space. The 3D prestack shot records were
calculated over this model by kinematic ray

Figure 3. A 3D synthetic model. The horizontal size is 12 ×
6 km; 1500 m/s is the velocity V above the first interface,
2000 m/s is the velocity between the first and second inter-
faces, and 2500 m/s is the velocity in the lower half-space.

Figure 4. Multiple prediction, synthetic example. (Top) A 3D view of the two pri-
maries and four predicted multiples. (Bottom) Inline and crossline displays from
the central part of the cube. The picked primaries and the predicted multiples are
color coded according to the table on the upper left.
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tracing. A stacked cube was obtained
after sorting the synthetic data to
CMPs, picking a stacking velocity, ap-
plying NMO correction, and stacking
the corrected gathers.

Six events were modeled in this ex-
ample: two primaries and four multi-
ples. The primaries (marked P 1 and
P 2 ) were reflected from the two in-
terfaces. The multiples were the two
first-order surface multiples from the
first and second interface (M 11 and
M 22), a peg-leg from the second in-
terface (M 21), and an interbed multi-
ple (IB 212). The two primaries were
picked on the stacked cube, and a
stacking velocity was extracted along
each one of the two picked T0 horizons.

The 3D prestack traveltimes were
generated, using hyperbolic approxi-
mation, for each CMP location along
the two horizons. Four multiples were
predicted using these prestack pri-
mary traveltimes. The results of the
prediction are summarized in Fig-
ure 4. The surface-related multiples
were predicted using Fermat’s princi-
ple and show a good match to the
modeled ones. For the prediction of
the interbed multiple, we used the ex-
tremum conditions (see equations 11)
to calculate the predicted surface. As
in the case of the surface-related multi-
ples, the match with the modeled data
is good.

In many situations where 2D lines
are processed and interpreted, the
truly 3D multiples are impossible to
handle correctly. If specific multiple-
generating horizons can be mapped
(from a multi-2D data set), our
method can predict the 3D multiples,
which can later be superimposed on
the 2D line for more accurate inter-
pretation and processing quality con-
trol (QC). We tested this procedure on
a set of 2D marine lines; the result is
presented in Figure 5. A portion of a
peg-leg (see arrow on Figure 5b) was
accurately predicted by our method.

Multiple prediction without the
need to access prestack data can be a
very powerful tool for interpretating
and processing QC. The next real
data example demonstrates how the
method is used as a QC tool to check
if significant multiple energy remains
in the processed cube. Figure 6b shows
a small 3D marine stack on which two
primaries, suspected to be multiple
generators, are picked (P 1 and P 2

in Figure 6b). A full surface multiple from the second interface
(M 22), a peg-leg from the first and second interfaces (M 21),
and an interbed multiple (IB 212) were predicted. An inline
from the center of the cube (Figure 6a) shows that these mul-
tiples are not present in the data.

Figure 5. Three-dimensional multiple prediction from a 2D survey. (a) Survey map
showing the 2D acquisition pattern overlain by a T0 map of the first primary reflec-
tor. (b) Portion of a 2D line [location marked by the green line on (a)], showing two
picked primaries (P 1 and P 2) and a predicted peg-leg (M 21). The arrow points to
significant multiple energy in the section.

Figure 6. Marine data QC. (a) Two primaries (P 1 and P 2), two surface-related mul-
tiples (M 21 and M 22), and an interbed multiple (IB 212) are shown on top of a
central inline taken from a stacked cube (b). No coherent events exist along the pre-
dicted multiples’ horizons.
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DISCUSSION AND CONCLUSIONS

A kinematic method for predicting 3D multiples, both sur-
face related and interbed in the time domain has been pre-
sented. The method can be classified as a poststack technique
that does not require access of prestack data and is highly suit-
able for interpretive work.

As opposed to earlier 2D studies, the multiple conditions
are calculated efficiently by implementing Fermat’s principle,
thus avoiding the need to estimate emergence angles of pri-
mary events from prestack traveltimes. The computational
cost of our method is directly related to the order and type of
the predicted multiple. Simple surface-related multiples (for
example, first- and second-order water-bottom multiples or
peg-legs) require a couple of minutes of computing time us-
ing state-of-the-art interpretation stations. For multiples of
the same order, the cost of predicting interbed multiples is at
least twice the cost of predicting the surface-related ones. In
general, the computational cost is dictated by the number of
surface intermediate points needed to satisfy the specific mul-
tiple condition.

The major limitation of our method comes from the as-
sumption that our primaries are hyperbolic. As long as this
assumption holds, our prediction method does not have dip
limitations. If this is not the case and the prestack primary
traveltimes are nonhyperbolic, the predicted multiples may be
mispositioned. Since our procedure is implemented in the time
domain, we find this assumption reasonable and practical.

The computational algorithm can be used to predict 3D
multiples in the depth domain. The difference is in the way
the prestack primary traveltimes should be calculated. After
picking suspected multiple-generating reflectors on the depth
section and by assuming that an interval velocity model is
available, kinematic forward modeling (upward only) must
be executed to calculate the prestack traveltimes. Our algo-
rithm can be applied to predict the multiples in the time do-
main. To finalize the process, each predicted multiple surface
should be map migrated from the time domain to the depth
domain.

Although this study was limited to predicting poststack mul-
tiples, our method provides 3D estimation of the multiples in
the prestack domain. Since the method is insensitive to acqui-
sition geometry, we believe the possibility to use the method
for multiple suppression warrants further investigation.
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