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ABSTRACT

Small geologic features manifest themselves in seismic
data in the form of diffracted waves, which are fundamentally
different from seismic reflections. Using two field-data ex-
amples and one synthetic example, we demonstrate the possi-
bility of separating seismic diffractions in the data and imag-
ing them with optimally chosen migration velocities. Our cri-
teria for separating reflection and diffraction events are the
smoothness and continuity of local event slopes that corre-
spond to reflection events. For optimal focusing, we develop
the local varimax measure. The objectives of this work are
velocity analysis implemented in the poststack domain and
high-resolution imaging of small-scale heterogeneities. Our
examples demonstrate the effectiveness of the proposed
method for high-resolution imaging of such geologic fea-
tures as faults, channels, and salt boundaries.

INTRODUCTION

Diffracted and reflected seismic waves are fundamentally differ-
nt physical phenomena �Klem-Musatov, 1994�. Most seismic data
rocessing is tuned to imaging and enhancing reflected waves,
hich carry most of the information about the subsurface. The value
f diffracted waves, however, should not be underestimated �Khaid-
kov et al., 2004�. When seismic exploration focuses on identifying
mall subsurface features �such as faults, fractures, channels, and
ough edges of salt bodies� or small changes in seismic reflectivity
such as those caused by fluid presence or fluid flow during reservoir
roduction�, it is diffracted waves that contain the most valuable in-
ormation.

In this paper, we develop an integrated approach for extracting
nd imaging of diffracted events. We start with stacked or zero-offset
ata as input and produce time-migrated images with separated and
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ptimally focused diffracted waves as output. The output of our pro-
essing flow can be compared to coherence cubes �Bahorich and
armer, 1995; Marfurt et al., 1998�.Although the coherence-cube al-
orithm tries to enhance incoherent features, such as faults, in the
igrated-image domain, we perform the separation in unmigrated

ata, where these features appear in the form of diffracted waves.
We also introduce diffraction-event focusing as a criterion for mi-

ration velocity analysis, as opposed to the usual flat-gather criterion
sed in seismic imaging. Focusing analysis is applicable not only to
ulticoverage prestack data but also to poststack or single-coverage

ata.
The idea of extracting information from seismic diffractions is not

ew. Harlan et al. �1984� used forward modeling and local slant
tacks for estimating velocities from diffractions; Landa and Keydar
1998� use common-diffraction-point sections for imaging of dif-
raction energy and detecting local heterogeneities; and Soellner and
ang �2002� simulate diffraction responses for enhancing velocity
nalysis. Sava et al. �2005� incorporate diffraction imaging in wave-
quation migration velocity analysis.

The novelty of our approach is in integration of two essential
teps:

� Separating diffracted and reflected events in the data space
� Focusing analysis for automatic detection of migration veloci-

ties that are optimal for imaging diffractions

e explain both steps and illustrate their application with field and
ynthetic data sets.Aprestack extension of our approach is presented
y Taner et al. �2006�.

SEPARATING DIFFRACTIONS

The underlying assumption that we employ for separating dif-
racted and reflected events is that, in a stacked-data volume, back-
round reflections correspond to strong coherent events with contin-
ously variable slopes. Removing those events reveals other coher-
nt information, often in the form of seismic diffractions. We pro-
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U90 Fomel et al.
ose to identify and remove reflection events with the method of
lane-wave destruction �Claerbout, 1992; Fomel, 2002�. Plane-
ave destruction estimates continuously variable local slopes of
ominant seismic events by forming a prediction of each data trace
rom its neighboring traces with optimally compact nonstationary
lters that follow seismic energy along the estimated slopes. Mini-
izing the prediction residual while constraining the local slopes to

ary smoothly provides an optimization objective function that is
nalogous to differential semblance �Symes and Carazzone, 1991�.
terative optimization of the objective function generates a field of
ocal slopes. The prediction residual then contains all events, includ-
ng seismic diffractions, that do not follow the dominant slope pat-
ern. An analogous idea, but with implementation based on predic-
ion-error filters, is discussed by Claerbout �1994� and Schwab et al.
1996�. Although separation of reflection and diffraction energy can
ever be exact, our method serves the practical purpose of enhancing
he wave response of small subsurface discontinuities.

IMAGING DIFFRACTIONS

How can one detect the spatially variable velocity necessary for
ocusing of different diffraction events?Agood measure of focusing
s the varimax norm used by Wiggins �1978� for minimum-entropy
econvolution and by Levy and Oldenburg �1987� for zero-phase
orrection. The varimax norm is defined as

� �

N�
i�1

N

si
4

��
i�1

N

si
2�2 , �1�

here si are seismic-signal amplitudes inside a window of size N.
arimax is simply related to kurtosis of zero-mean signals.
Rather than working with data windows, we turn focusing into a

ontinuously variable attribute using the technique of local at-
ributes �Fomel, 2007b�. Noting that the correlation coefficient of
wo sequences ai and bi is defined as

c�a,b� �

�
i�1

N

aibi

��
i�1

N

ai
2�

i�1

N

bi
2

�2�

nd the correlation of ai with a constant is

c�a,1� �

�
i�1

N

ai

�N�
i�1

N

ai
2

, �3�

ne can interpret the varimax measure in equation 1 as the inverse of
he squared correlation coefficient between si

2 and a constant: �
1/c�s2,1�2. Well-focused signals have low correlation with a con-

tant and correspondingly high varimax.
Going further toward a continuously variable focusing attribute,

otice that the squared correlation coefficient can be represented as
he product of two quantities c�s2,1�2 � pq, where
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p �

�
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si
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N
, q �

�
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�
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. �4�

urthermore, p is the solution of the least-squares minimization
roblem

min
p

�
i�1

N

�si
2 � p�2, �5�

nd q is the solution of the least-squares minimization

min
q

�
i�1

N

�1 � qsi
2�2. �6�

his allows us to define a continuously variable attribute � i by using
ontinuously variable quantities pi and qi, which are defined as solu-
ions of regularized optimization problems

min
pi

��
i�1

N

�si
2 � pi�2 � R�pi�� , �7�

min
qi

��
i�1

N

�1 � qisi
2�2 � R�qi�� , �8�

here R is a regularization operator designed to avoid trivial solu-
ions by enforcing a desired behavior �such as smoothness�. Shaping
egularization �Fomel, 2007a� provides a particularly convenient
ethod for enforcing smoothing in an iterative optimization

cheme.
We apply the local focusing measure to obtain migration-velocity

anels for every point in the image. First, we follow the procedure
utlined in the previous section to replace a stacked or zero-offset
ection with a section containing only separated diffractions. Next,
e migrate the data multiple times with different migration veloci-

ies. This is accomplished by velocity continuation �Fomel, 2003b�,
method that performs time-migration velocity analysis by continu-

ng seismic images in velocity with the process also called image
aves �Hubral et al., 1996�. The velocity-continuation theory �Fo-
el, 2003a� shows that one can accomplish time migration with a set

f different velocities by making differential steps in velocity simi-
arly to the method of cascaded migrations �Larner and Beasley,
987� but described and implemented as a continuous process. Al-
hough comparable in theory to an ensemble of Stolt migrations
Fowler, 1984; Mikulich and Hale, 1992�, velocity continuation has
he advantage of working directly in the image domain. It is imple-

ented with an efficient and robust algorithm based on the fast Fou-
ier transform.
EG license or copyright; see Terms of Use at http://segdl.org/
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Diffraction imaging U91
Finally, we compute � i for every sample point in each of the mi-
rated images. Thus, N in equations 7 and 8 refers to the total number
f sample points in an image. The output is focusing image gathers
FIGs�, exemplified in Figure 1.AFIG is analogous to a convention-
l migration-velocity analysis panel and suitable for picking migra-
ion velocities. The main difference is that the velocity information
s obtained from analysis of diffraction focusing as opposed to sem-
lance of flattened-image gathers used in prestack analysis.

EXAMPLES

Three different examples illustrate applications of our method to
he imaging of geological faults and irregular salt boundaries.
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igure 1. Focusing image gathers �FIGs� for poststack migration ve-
ocity analysis by diffraction focusing. Red colors indicate strong fo-
using. Superimposed black curves are slices of the picked migra-
ion velocity shown in Figure 3b.
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igure 2. First test example. �a� Stacked section from a Gulf of Mex-
co data set. �b� Local slopes estimated by plane-wave destruction.
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ault detection

The data for our first example are shown in Figure 2a, which dis-
lays a stacked section of a vintage Gulf of Mexico data set �Claer-
out, 2005�. Diffractions caused by irregular fault boundaries are
reserved in the stack, thanks to dip-moveout �DMO� processing,
ut are hardly visible underneath strong reflection responses. Figure
b shows the dominant slope of reflection events estimated by the
lane-wave destruction method. Numerous diffractions were sepa-
ated from reflections by plane-wave destruction and are shown in
igure 3a.
Figure 3b shows the migration velocity picked from focusing

ommon-image gathers �FIG�. Example FIGs are shown in Figure 1.
igure 4a is the image of diffracted events that collapse to collective-

y form fault surfaces. Figure 4b is the image obtained by migrating
he original stack with velocities estimated from diffraction-focus-
ng analysis. In this final image, fault surfaces align with discontinui-
ies in seismic reflectors. The image compares favorably with imag-
s of the same data set from the conventional processing shown by
laerbout �2005�.

alt detection

Figure 5a shows another example, also from the Gulf of Mexico.
e used the nearest-offset section for diffraction analysis. Plane-
ave destruction estimates dominant slopes of continuous-reflec-

ion events �Figure 5b� and reveals numerous diffractions generated
y rough edges of a salt body �Figure 6a�. We used shaping regular-
zation �Fomel, 2007a� with the smoothing radius of 40�10 sam-
les to constrain the slope-estimation process. Focusing analysis
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igure 3. Diffraction separation. �a� Diffraction events separated
rom data in Figure 2a. �b� Migration velocity picked from local vari-
ax scans after velocity continuation of diffractions.
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enerates a time-migration velocity �Figure 6b� suitable for collaps-
ng diffractions �Figure 7a�. Both sharp edges of the salt body and
ontinuous specular reflections appear in the final image �Figure 7b�.
nevitably, prestack depth migration �as opposed to time migration�

s required to properly position the salt boundary in depth. Time mi-
ration, however, provides a reasonable first-order approximation
omputed at a small fraction of the cost.

hannel detection

The third example is a 3D synthetic data set. The velocity model
as designed to simulate a complex sand-channel geometry in a
eepwater clastic reservoir �Figure 8a�. Including an overburden
ith stochastically generated velocity fluctuations on top of the res-

rvoir model, we generated zero-offset data shown in Figure 8b. The
ata contain reflections from continuous parts of the model and nu-
erous diffractions generated by the channel edges. Separating dif-

ractions using inline plane-wave destruction �Figure 9�, we com-
are depth-migrated images of the original data and of the separated
iffractions �Figure 10�. The fine details of the stacked channel ge-
metry are revealed by diffraction imaging.
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igure 4. Migrated images. �a� Migrated diffractions from Figure 3a.
b� Initial data from Figure 2a migrated with velocity estimated by
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b� Initial data from Figure 5a migrated with velocity estimated by
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igure 8. 3D synthetic test. �a� Synthetic velocity model for a chan-
elized reservoir. �b� Modeled zero-offset data.
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a) Inline slope
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igure 9. Diffraction separation for the 3D synthetic test from Figure
. �a� Dominant inline slope estimated by plane-wave destruction.
b� Diffractions separated from the data.
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igure 10. Depth migration of the 3D synthetic test data. �a� Migrat-
d data. �b� Migrated diffractions.
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CONCLUSIONS

We have developed a method of efficient migration velocity anal-
sis based on separating and imaging seismic diffractions. The effi-
iency follows from the fact that the proposed analysis is applied in
he poststack domain as opposed to the conventional prestack veloc-
ty analysis. We used continuity of dominant reflections in the zero-
ffset or stacked sections as a criterion for separating reflections
rom diffractions. We then imaged separated diffractions using local
ocusing analysis for picking optimal migration velocities.
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