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ABSTRACT

Velocity-model estimation with seismic reflection tomog-
raphy is a nonlinear inverse problem. We present a new meth-
od for solving the nonlinear tomographic inverse problem us-
ing 3D prestack-depth-migrated reflections as the input data,
i.e., our method requires that prestack depth migration
�PSDM� be performed before tomography. The method is ap-
plicable to any type of seismic data acquisition that permits
seismic imaging with Kirchhoff PSDM. A fundamental con-
cept of the method is that we dissociate the possibly incorrect
initial migration velocity model from the tomographic veloc-
ity model. We take the initial migration velocity model and
the residual moveout in the associated PSDM common-im-
age gathers as the reference data. This allows us to consider
the migrated depth of the initial PSDM as the invariant obser-
vation for the tomographic inverse problem. We can there-
fore formulate the inverse problem within the general frame-
work of inverse theory as a nonlinear least-squares data fit-
ting between observed and modeled migrated depth. The
modeled migrated depth is calculated by ray tracing in the to-
mographic model, followed by a finite-offset map migration
in the initial migration model. The inverse problem is solved
iteratively with a Gauss-Newton algorithm. We applied the
method to a North Sea data set to build an anisotropic layer
velocity model.

INTRODUCTION

We present a new method of 3D reflection tomography with the
im of building velocity-depth models for depth conversion and
restack depth migration �PSDM�. The principle of the method is to
se PSDM reflections of a possibly incorrect velocity-depth model
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s the input data for the nonlinear least-squares problem of reflection
omography. The main difference compared with previous methods,
hich also use PSDM reflections as input for tomography, is that we
efine depth-migrated reflections from an initial PSDM as invariant
bservables of a nonlinear least-squares data-fitting problem in the
epth domain. We demonstrate that our formulation of the inverse
roblem is equivalent to nonlinear least-squares fitting of prestack
raveltimes in classic reflection tomography �e.g., Bishop et al.,
985� because of the one-to-one relationship between unmigrated
nd migrated locally coherent events in the framework of Kirchhoff
igration �Liu and Bleistein, 1995; Adler, 2002�. However, working
ith depth-domain data has several advantages.

SDM and migration velocity analysis (MVA)

PSDM is a very powerful seismic imaging technique because it si-
ultaneously solves the focusing and positioning problems of seis-
ic prestack imaging when an accurate velocity-depth model is pro-

ided. The construction of a correct velocity model is therefore the
ost important task of a depth-imaging project. The focusing quali-

y of a velocity-depth model can be measured directly during migra-
ion velocity analysis �MVA� of PSDM common-image gathers
CIGs�. When the velocity-depth model correctly focuses the seis-
ic data, all primary reflections are aligned horizontally in all CIGs

s a function of offset or reflection angle. In the case of a wrong ve-
ocity model, we observe a misalignment of reflections that we call
esidual moveout �RMO�.

PSDM is an excellent MVAtool because of its strong sensitivity to
he velocity model, which can be quantified for Kirchhoff PSDM
Adler, 2002; Iversen, 2006�. Many techniques for velocity-model
pdating with MVA criteria have been developed �see Stork, 1992
or a comprehensive review of these methods�. However, a difficulty
f MVA velocity-model updating is that correct focusing alone does
ot guarantee the correct position of a reflector image in depth. Other
riteria must be added, e.g., geologic constraints such as well mark-
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VE14 Adler et al.
rs or an a priori velocity model. These criteria can be integrated eas-
ly in velocity-model updating when the process is formulated as an
nverse problem, such as reflection-traveltime tomography.

omographic methods

There are at least three major reasons why tomographic methods
re suitable for PSDM velocity model building. First, PSDM is re-
uired for correct imaging in strongly heterogeneous velocity mod-
ls in which raypath bending is very strong and spatially varying.
ence, the nonlinearity of traveltimes with respect to velocity is sig-
ificant, and we have to solve a fully nonlinear inverse problem. The
trength of tomography is that it solves the nonlinear inverse prob-
em globally by updating the heterogeneous velocity model until all

odeled raypaths explain observed traveltimes. If the model can ex-
lain observed traveltimes, we obtain flat events in CIGs �Ehinger
nd Lailly, 1995�. Second, traveltime modeling by ray tracing allows
mplementing tomography in three dimensions for any configura-
ion in the seismic data acquisition, e.g., marine streamer, land,
cean-bottom cable �OBC�, multiazimuth, wide azimuth, and well
eismic �e.g., Chiu and Steward, 1987�. Third, the nonseismic data
an be added to the formulation of the inverse problem �Le Stunff
nd Grenier, 1998; Sexton, 1998�.

Reflection-traveltime tomography �e.g., Bishop et al., 1985; Chiu
nd Steward, 1987� was developed for velocity-model building long
efore 3D PSDM was used routinely in the industry. The principle of
eflection-traveltime tomography is borrowed from the general con-
ept of data fitting in inverse theory �Tarantola, 1987; Menke, 1989�:
ind a model m that matches the modeled data d�m� with the ob-
erved data dobs that are invariants of the inverse problem, i.e., they
re independent of the unknown model m to be determined. The mis-
atch is often measured with the least-squares norm � · �2.
Traveltime inversion has two very important practical advantag-

s. First, using the invariant traveltime data tobs allows solving the
onlinear inverse problem iteratively by linear inversions, for exam-
le, with the Gauss-Newton scheme. As a consequence, the initial
omographic model can be very different from the optimal solution.
econd, the correctness of any model update can be controlled by
valuating the mismatch between t�m� and tobs without repeating
SDM and MVAwith the updated model. This direct quality control
QC� is very powerful for testing suitable model architectures
blocky or smooth� and their optimal parameterization �e.g., number
f unknowns, regularization weights, a priori weights, etc.� to bal-
nce the trade-off between model mismatch errors �the model cannot
escribe the data� and model estimation errors �resulting, for exam-
le, when fitting noise with a very flexible model�. This trade-off
lso is known as underfitting versus overfitting �Gershenfeld, 1999;
i and Oldenburg, 1999; van Wijk et al., 2002�.
Despite these advantages, prestack reflection traveltime tomogra-

hy has never been used routinely in the industry because picking
restack traveltimes on data with low signal-to-noise level or on
arge 3D data sets is considered almost unfeasible, particularly on
omplex seismic data for which precise PSDM and tomographic
ethods are deemed necessary. A second apparent disadvantage of

eflection tomography is that it requires continuous reflectors, cover-
ng the model partly or completely, for finite-offset ray tracing. A
onvenient way of defining these reflectors is by seismic interpreta-
ion of geologic horizons in the zero-offset time domain �in practice,
he stack domain�. In the case of time interpretation, we can map
hem conveniently into the initial tomographic model by normal ray
Downloaded 03 Jan 2011 to 193.55.218.41. Redistribution subject to S
ap migration �see, e.g., Robein, 2003 for a review of depth conver-
ion techniques�. It turns out that interpreted horizons are valuable
nd sometimes necessary geologic constraints for the velocity mod-
l, as when defining a layered model.

The major challenge for applying reflection traveltime tomogra-
hy is access to kinematic seismic information, such as prestack
raveltimes and interpreted horizons �Apostoiu-Marin and Ehinger,
997�. Many methods have been proposed to improve the efficiency
f reflection tomography. We review methods that use unmigrated
nd migrated seismic data as a starting point.

omography with the unmigrated data

A first strategy is to access kinematic data in the unmigrated time
omain with automated processing methods, replacing cumbersome
nterpretive picking of horizons and traveltimes. There are two cate-
ories of methods. The first category is based on moveout analysis
ools such as stacking velocity analysis �Guiziou et al., 1996; Sex-
on, 1998� or common-reflection-surface �CRS� stacking �Duve-
eck, 2004�; these provide kinematic wavefront attributes suitable
or 3D tomographic inversion. However, these techniques assume
hort-spread hyperbolic moveout. Tomographic stacking velocity
nversion is extended to higher-order moveout by Williamson et al.
1999�.

The second category is based on picking locally coherent events
y local slant stacking. Locally coherent events were first used for
omography by Sword �1987� and later by Billette and Lambaré
1998� and Chalard �2002� for a technique called stereotomography.
hese techniques do not make assumptions on moveout, but the au-

omated picking might not be robust enough and requires careful
C. Lavaud et al. �2004� propose making stereotomography more

obust by reconstructing locally coherent events from CRS at-
ributes. CRS-based tomography and stereotomogaphy are some-
imes limited by the fact that they are designed for smooth velocity

odels because of the avoidance of continuous horizons. Despite
hese efforts, time-domain tomographic methods are rarely used for
SDM projects.

omography with the migrated data

Another strategy is to access the kinematic data in the migrated
omain �in time or depth�. Presently, migrated seismic images are al-
ays available for interpretation on industry projects. Many authors

e.g., van Trier 1990; Stork, 1992; Whitcombe, 1994; Ehinger and
ailly, 1995; Adler, 1996; Liu, 1997; Sexton, 1998� point out that the
igrated domain is most suitable for accessing kinematic data for

ime-depth mapping and tomography.
It follows from ray theory and Kirchhoff migration theory �e.g.,

leistein, 1987� that unmigrated locally coherent events are con-
ected one-to-one with migrated locally coherent events �time or
epth�. This is expressed mathematically by equations for finite-off-
et map migration �van Trier, 1990� or, equivalently, by the kinemat-
c imaging equations �Liu and Bleistein, 1995�. As a consequence,
nmigrated or migrated events provide equivalent information for
omography.
EG license or copyright; see Terms of Use at http://segdl.org/
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Nonlinear tomography in PSDM CIGs VE15
Because migration simplifies the seismic image, even for quite in-
orrect velocity models, RMO in migrated CIGs is mostly well be-
aved and can be picked efficiently in an automated manner �e.g.,
oodward et al., 1998; Lemaistre et al., 2001�. The reflecting inter-

ace required for ray tracing in tomography can be obtained from in-
erpreting the RMO-corrected stack after prestack migration �in time
r depth�, which is followed by a zero-offset demigration �in time or
epth� and a normal ray-map migration �Whitcombe, 1994; Sexton,
998; Adler et al., 2005�. Most importantly, the kinematic data ac-
ess from migrated 3D CIGs and interpretation on postmigration
tacks is feasible in the time frame of industrial projects. We also
dopt this strategy for our method.

One issue remains: how to formulate the nonlinear tomographic
nverse problem with the migrated seismic data.

olving the nonlinear inverse problem

In time migration, the concept of matching invariant observables
s directly applicable; the invariant is now the migrated time of
restack time-migrated �PSTM� events because they remain un-
hanged once the time migration finishes. We can consider the mi-
rated time as an observable because we make our observation
picking, interpretation� on the migrated, i.e., processed, data. Seis-
ic processing transforms our physical observables into what we

all processed observables. We can use them as the input data for in-
erse problems as long as the associated forward modeling includes
he effect of the corresponding processing step �Raynaud and
obein, 1998�. Once we accept this idea, the concept of traveltime

nversion is extended easily to the time-migrated data, e.g., after dip
oveout �DMO� or PSTM, the ray tracing in the tomographic model

s followed by finite-offset map migration, providing modeled
restack migrated times �Raynaud and Robein, 1998; Sexton, 1998;
dler et al., 2005�.
The time-migration velocity model is used only as a parameter for
ap migration in forward modeling; the unknown of the inverse

roblem is a velocity-depth model. The nonlinear inverse problem
atches the migrated time of modeled events with the migrated time

f picked �observed� migrated events and can be solved iteratively.
bserved migrated times are reconstructed in a horizon-consistent
anner from the interpretation �migrated zero-offset� and from au-

omatically picked NMO after DMO or RMO after PSTM �see
obein, 2003 for a review of time imaging methods�. These methods
ork well for high-precision depth-conversion tasks with moderate-

y complex velocity models �Sexton et al., 2000; Adler et al., 2008�.
In the case of depth-migrated data, we encounter the difficulty that

he position of a migrated event depends, of course, on the velocity-
epth model to be determined. Two approaches in the literature han-
le this problem. The first approach reconstructs invariant prestack
raveltimes T obs from PSDM events via ray tracing, which represents

kinematic demigration �Ehinger and Lailly, 1995; Jacobs et al.,
995�. This approach enables nonlinear traveltime inversion, but it
equires time-consuming interpretation of horizons in the prestack
omain before demigration can be performed. The second approach
ses an optimization criterion when formulating the inverse prob-
em, based on depth-migration kinematics such as focusing or flat-
ess of events. Within this approach, we can distinguish two meth-
ds.
Downloaded 03 Jan 2011 to 193.55.218.41. Redistribution subject to S
The first method applies a linear inversion after PSDM and RMO
nalysis �Stork, 1992�, minimizing the residual depth error �z
RMO� for all offsets. Stork �1992� shows that the depth error is con-
erted easily into a traveltime misfit so that a standard algorithm for
raveltime inversion can be used. Such an approach is very practical
ith 3D data because it allows horizon interpretation in the postmi-
rated stack domain and automated RMO analysis for the data ac-
ess. This kind of method is probably the most widely used in the in-
ustry.

Chauris et al. �2002a, 2002b� propose a flatness criterion of local-
y coherent events in PSDM CIGs for the linear tomographic inver-
ion. However, they develop their method in only two dimensions,
nd it suffers from the same limitations as stereotomography �quali-
y control of automated picking, smooth velocity models only�. As
e demonstrate later, these linear inversion methods do not account

or invariant observables. As a consequence, we cannot control the
uality of the model update without performing another PSDM and
MO analysis. Another limitation is that linear tomography only
rovides a correct model when the initial model is already close to
he solution. Otherwise, we have to iterate through the so-called
SDM cycle �Figure 1a� to solve the nonlinear inverse problem,
hich is very expensive.
The second method avoids the PSDM cycle by remigrating the ki-

ematic data after each model update to solve the nonlinear inverse
roblem iteratively by minimizing the mismatch between kinemati-
ally remigrated events �van Trier, 1990; Liu, 1997; Woodward et
l., 1998; Guillaume et al., 2004; Wang et al., 2006�. All methods of
he second approach use the input data �migrated depth errors, mi-
rated positions� that depend on the unknown of the inverse problem
velocity model�. Consequently, corresponding objective functions
o not contain the invariant data dobs.

a)

b)

igure 1. Comparison between �a� PSDM cycle and �b� nonlinear to-
ography.
EG license or copyright; see Terms of Use at http://segdl.org/
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VE16 Adler et al.
In our method of nonlinear reflection tomography with depth-mi-
rated data, we use migrated depth in CIGs as the invariant observ-
ble zobs in the inverse problem. The motivation for this development
s threefold. First, we prefer to formulate the inverse problem as data
tting to invariants such as traveltime tomography because we gain
ll of its advantages. Second, the nonlinear time-domain tomogra-
hy after DMO or PSTM was very successful in determining accu-
ate velocity-depth models for structural uncertainty estimation
Sexton et al., 2000� and drilling applications �Adler et al., 2008�.
herefore, we expect similar results with PSDM data. Third, the da-

a-fitting approach enables us to solve another important practical
roblem that we have not yet mentioned: changing the architecture
f a velocity-depth model during a depth-imaging project.

In practice, this problem arises when, for example, a blocky mod-
l best represents the geology but a previous PSDM was run with a
mooth model, such as Kirchhoff depth migration that requires
moothing of blocky velocity models. The smoothing can lead to in-
onsistent reflector depths between the blocky velocity model and
epth image when velocity contrasts are strong. As a consequence,
irchhoff PSDM CIGs might exhibit slightly unflattened events,

ven though reflector depths of the blocky model would be correct
hen they match well markers. As we demonstrate with our field
ata example, our method enables us to build correct blocky models
sing data from a Kirchhoff PSDM, which requires smooth velocity
odels.
The basic concept of our method is to dissociate the migration
odel mG from tomographic velocity model m, i.e., the method op-

rates with two distinct velocity models. As a consequence, we are
ree to choose model mG as the initial model for m or a completely
ifferent model �Figure 1b�. The subscript G in mG reminds us that
igration kinematics are provided by Green’s functions of Kirch-

off depth migration. We use an initial PSDM with a possibly incor-
ect model mG as the reference data set that provides the observed
epth zobs�mG� to which we match modeled migrated depth
�mG,m�. For example, we use a smooth velocity model mG for an
nitial Kirchhoff depth migration and construct a blocky velocity

odel m that ties well markers, which is suitable for wave-equation
epth migration. The model mG is kept unchanged during the veloci-
y-model-building process.

Within the framework of the method of Raynaud and Robein
1998�, we use only the migration model to perform a finite-offset
ap migration exactly reproducing kinematics of the PSDM algo-

ithm applied to the seismic data. Therefore, we can compare the
odeled data �migrated depth� in the domain in which we made ob-

ervations �RMO analysis in PSDM CIGs�. With this approach, we
an solve the nonlinear inverse problem iteratively by least-squares
ata-fitting in complete analogy to traveltime inversion �Figure 1b�.
he input data are RMO values and horizons interpreted on the
MO-corrected stack of the initial PSDM. The forward modeling
dds a finite-offset map migration after ray tracing, but this is still
uch faster than a PSDM and RMO analysis.
In the following sections, we first recall principles of classic re-

ection traveltime inversion and linear tomography in depth after
VA. Then we explain forward modeling with ray tracing and fi-

ite-offset map migration. Finally, we present the formulation of the
onlinear inverse problem and show an application of our method to
North Sea data set in which we built a vertical transversely isotro-
ic �VTI� velocity model starting from an initial PSDM using a sim-
le 1D isotropic model.
Downloaded 03 Jan 2011 to 193.55.218.41. Redistribution subject to S
NONLINEAR INVERSION OF
REFLECTION TRAVELTIMES

Classic reflection tomography �e.g., Bishop et al., 1985� is formu-
ated as an inverse problem of fitting invariant �picked� prestack
raveltimes T obs in the least-squares sense. The objective function to
e minimized with respect to the model m is

C�m� � �T obs � T�m��2. �1�

Here, the tomographic model m is a combination of velocity and
eflector models �e.g., Ehinger and Lailly, 1995�. To keep formulas
imple, we neglect possible weights or covariance matrices and ad-
itional terms in the objective function, such as regularization terms,
priori terms, or other misfit terms �e.g., geologic constraints�. Be-
ause the traveltime function T�m� is nonlinear in m, the classic
ethod to solve the inverse problem is to linearize the traveltime

unction and to minimize the objective function,

C�dm� � �T obs � T�m� �
�T�m�
� tm

dm�2

� ��t�m� �
�T�m�
� tm

dm�2

�2�

ith respect to a perturbation dm of the model m.
Because T obs is invariant or model independent, we can exactly

alculate the misfit of the updated model

�t�m � dm� � T obs � T�m � dm� �3�

nd solve the nonlinear inverse problem iteratively with equation 2
n a Gauss-Newton algorithm. As shown below, this is not possible
ith linear tomography after MVAin the depth domain.

LINEAR TOMOGRAPHY IN DEPTH AFTER MVA

Depth-migrated data usually allow interpretation of horizons as
ingle-valued functions even when the velocity model is wrong.

ithout loss of generality, we assume in the following that we have
igrated data in the common-offset domain, denoted by half-offset

. It is very convenient to define reflector interfaces for reflection to-
ography by the imaged depth z�h � 0,x,y,mG� � z�h0,mG� of a

eflection in the stack after PSDM. Tomographic methods based on
VA criteria �e.g., Stork, 1992; Chauris et al., 2002a, 2002b� natu-

ally assume the migration and tomographic models are identical,
.e., m � mG. Modeled traveltimes T�h,z�h0,m�,m� �Figure 2b�
herefore depend only on the velocity model m. The dependency of
he horizon z�h0,m� on m can be handled with normal ray remigra-
ion respecting the invariant zero-offset traveltime �e.g., Biondi,
006�. No separate interface model is required as in classic reflection
omography. As pointed out by van Trier �1990�, this has the advan-
age of having fewer unknowns, and it avoids handling unknowns
ith different physical dimensions.
The objective of linear tomography is to minimize depth errors

z�h,m� picked after PSDM, for instance, by an automated RMO
EG license or copyright; see Terms of Use at http://segdl.org/
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Nonlinear tomography in PSDM CIGs VE17
nalysis of events z�h,m� �Figure 2a�. The corresponding unmi-
rated traveltime data are Tobs � T�h,z�h,m�,m�. Because we trace
ll finite-offset rays for tomography from the zero-offset imaged
epth z�h0,m� �horizon�, we cannot reconstruct exactly the observed
nite-offset traveltime �Figure 2b�, but we can approximate Tobs by
econstructing the imaged depth z�h,m� � z�h0,m� � �z�h,m�:

T obs�h� � T�h,z�h0,m� � �z�h,m�,m�

� T�h,z�h0,m�,m� �
�T�h,z�h0,m�,m�

� z
�z�h,m�

� T�h,z�h0,m�,m� � �t�h,m� , �4�

ith

�t�h,m� �
�T�h,z�h0,m�,m�

� z
�z�h,m� . �5�

quation 5 is equivalent to equation 1c of Stork �1992�. Following
quation 2, we can formulate the inverse problem in the time domain
ith the linearized objective function:

C�dm� � �T obs�h� � T�h,z�h0,m�,m� � � �T�h,m�
� tm

�
�T�h,m�

� z

� z�h0,m�
� tm

�dm�2

. �6�

However, our approximated T obs in equation 4 is not an invariant.
rom equations 4–6 follows

C�dm� � ��t�h,m� � � �T�h,z�h0,m�,m�
� tm

�
�T�h,z�h0,m�,m�

� z

� z�h0,m�
� tm

�dm�2

. �7�

he objective function in equation 7 has the same form as equation 2,
ut we cannot exactly calculate a misfit residual of the updated mod-
l as in equation 3. Instead, a new PSDM and RMO analysis must be
erformed to evaluate the correctness of the updated velocity model.
e note, however, that the new imaged depth of the interpreted hori-

on z�h0,m � dm� can be predicted exactly with normal ray remi-
ration, so we do not need to reinterpret the postmigration stack of
he updated model. This result also is useful for nonlinear iterative

ethods �see Figure 5 for examples�.
To extend the linear MVA tomography to an iterative method, it is

ecessary to model the new migrated depth in the updated tomogra-
hic model via kinematic finite-offset remigration of depth-migrat-
d events. This can be achieved by applying ray tracing �demigra-
ion� in the model m followed by finite-offset map migration in the

odel m � dm.
Several methods of kinematic finite-offset remigration appear in

he literature. Van Trier �1990� applies a linearization of the curved
elocity ray �Iversen, 1996; Adler, 2002� in his forward problem.
iu �1997� and Woodward et al. �1998� use a linearized vertical per-

urbation of the imaged depth z�h,m� to formulate the objective
unction minimization within CIG locations. Guillaume et al. �2004�
nd Wang et al. �2006� apply a demigration of locally coherent
epth-migrated events in the migration model mG followed by exact
D finite-offset map migration in tomographic model m � dm. To
Downloaded 03 Jan 2011 to 193.55.218.41. Redistribution subject to S
ur knowledge, the last method is the first 3D depth-domain tomog-
aphy method that dissociates the migration velocity model from the
omographic model. The associated inverse problems of these for-
ard-modeling methods all try to minimize distances between remi-
rated events, i.e., they are based on MVA criteria �event flattening
r focusing�. The formulation of the inverse problem of our method
s fundamentally different from those methods because we use a da-
a-fitting criterion for invariant observed migrated depth zobs.

NONLINEAR INVERSION OF INVARIANT
DEPTH-MIGRATED REFLECTIONS

We formulate in the following the forward-modeling and inverse
roblem of our tomographic inversion method.

orward modeling with finite-offset map migration

Forward modeling consists of two steps: first, we trace rays on ho-
izons in the tomographic model m; second, we apply exact 3D fi-
ite-offset map migration in the migration model mG to the modeled
ata. This approach provides flexibility in our choice of model archi-
ectures for tomographic model m �blocky or smooth�. The map mi-
ration reproduces kinematics of the PSDM that was applied to the
eismic data �Raynaud and Robein, 1998�.

Our fundamental equation for finite-offset map migration is the
maging condition �Liu and Bleistein, 1995; Liu, 1997; Adler, 2002�
f Kirchhoff depth migration:

T obs�xS,xR� � TG�xS,xR,xG
obs,mG� ,

p�
obs�xS,xR� � pG,��xS,xR,xG

obs,mG� ,

p�
obs�xS,xR� � pG,��xS,xR,xG

obs,mG� . �8�

This equation is equivalent to the stationary-phase condition of
irchhoff migration �Bleistein, 1987� and states that the reflector

mage point xG
obs � �xG

obs,yG
obs,zG

obs�, in model mG is connected one-to-
ne with the recorded locally coherent reflection event
T obs,p�

obs,p�
obs� via a pair of specular rays defined by �TG,pG,� ,pG,��

rom Green’s functions. The recorded and modeled traveltime data
hare the same source and receiver locations xS and xR. Quantities

pG,� , and pG,� are the horizontal slownesses or traveltime derivatives
f Green’s functions. Coordinates � and � represent integration co-
rdinates of Kirchhoff PSDM that depend on the imaging configura-
ion as follows:

a) b)

igure 2. Linear tomography after MVA. �a� CIG with a curved
vent having RMO �z�h,m�. �b� Forward modeling with ray tracing
n zero-offset migrated depth �horizon� z�h ,m�.
0
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ommon shot: �� ,�� � �xR,yR�, p� � pxR
�

�T

�xR
,

p� � pyR
�

�T

� yR
;

ommon receiver: �� ,�� � �xS,yS�, p� � pxS
�

�T

�xS
,

p� � pyS
�

�T

� yS
;

ommon offset: �� ,�� � � xS � xR

2
,
yS � yR

2
�,

p� � pxS
� pxR

,

p� � pyS
� pyR

.

Equation 8 represents a bijective map between an observed time
vent and its corresponding image point we observe in depth. In this
ense, we attach the superscript obs at the image point xG

obs, stressing
he fact that the image point will constitute our invariant observable
n the inverse problem, although it depends on a possibly incorrect

igration velocity model. This is valid because the migration veloc-
ty remains invariant while solving the inverse problem. The RMO-
orrected stack after the initial PSDM is used for horizon interpreta-
ion. Because our initial tomographic model m can be different from

G, we map each horizon into the initial tomographic model with
ormal rays. We represent a horizon by z�h0,m� � z�h0,x,y,m�.
For our forward problem, we apply the imaging condition to the
odeled data, i.e., after shooting specular ray pairs in our tomogra-

hic model m from the horizon z�h0,m� that emerge at surface loca-
ions xS and xR:

T�xS,xR,z�h0,m�,m� � TG�xS,xR,xG,mG� ,

p��xS,xR,z�h0,m�,m� � pG,��xS,xR,xG,mG� ,

p��xS,xR,z�h0,m�,m� � pG,��xS,xR,xG,mG� . �9�

igure 3. Correspondence between �a� reflection event in tomogra-
hic model and �b� image point xG in migration model when travel-
imes and their derivatives are identical for both raypaths.
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As a consequence, an image point xG in the migration model mG

epends on model m because it is connected via the imaging condi-
ion to a reflection point in the tomographic model m �Figure 3�. It
ollows from equations 8 and 9 that our tomographic model m
atches recorded reflection events �T obs,p�

obs,p�
obs� when the imaging

ondition for the ray-traced data �equation 9� yields the image point

G
obs. It is important to note that we do not formulate the inverse prob-
em as matching a modeled point xG to a specific point xG

obs as, for ex-
mple, in stereotomography �Billette and Lambaré, 1998�, which
ries to match a modeled locally coherent event �T mod,p�

mod,p�
mod� to a

articular observed one �T obs,p�
obs,p�

obs�. Because we use the horizon-
onsistent data, we assume we always find a point xG

obs at the modeled
oint xG �through interpolation if necessary� so that we have imme-
iately xG � xG

obs, yG � yG
obs for all modeled points xG �otherwise, a

oint xG cannot be used for the inverse problem�. This leaves us with
he task of matching the modeled imaged depth zG�h,xG,yG,m� with
he observed imaged depth zG

obs�h,xG,yG,mG�. For simplicity, we ne-
lect the coordinates xG,yG in zG�h,m� and zG

obs�h,mG�.
To solve the forward problem, we calculate the image point xG

rom equation 9, which represents a nonlinear inverse problem for
eterogeneous velocity models. Similar to van Trier �1990�, we iter-
tively search image points for all modeled events by minimizing the
ollowing nonlinear objective function in xG

C�xG�

� �� T�xS,xR,z�h0,m�,m� � TG�xS,xR,xG,mG�
��p�xS,xR,z�h0,m�,m� � pG�xS,xR,xG,mG��

��
L2

,

�10�

ith p � �p� ,p�� and pG � �pG,� ,pG,��.
We store quantities TG�mG� and pG�mG� in Green’s functions files

f the initial PSDM and subsequently use them for the forward prob-
em of tomography. The finite-offset map migration can be imple-

ented efficiently with high-performance computing technology
vailable in the industry.

In summary, we shoot specular finite-offset rays from horizons
hat provide all quantities of the left-hand side of equation 9 required
or finding corresponding image points xG. To set up the inverse
roblem, we collect the observed migrated depth zG

obs�h,mG� at the
odeled CIG location �xG,yG� from the horizon-consistent RMO

ata.

he inverse problem

The objective of our tomographic inversion method is to match
he modeled imaged depth zG�h,m� with an invariant observed im-
ged depth zG

obs�h,mG� in the initial migration model that is possibly
ncorrect.

First, we reconstruct the observed imaged depth from the depth
orizon �zero-offset imaged depth� zG

obs�h0,mG� and the RMO
zG

obs�h,mG� at the modeled CIG location �xG,yG�:

zG
obs�h,mG� � zG

obs�h0,mG� � �zG
obs�h,mG� . �11�
EG license or copyright; see Terms of Use at http://segdl.org/
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efining the tomographic misfit in a CIG as a function of half-offset
�Figure 4� as

�zG�h,m� � zG
obs�h,mG� � zG�h,m� , �12�

e formulate the inverse problem as a minimization of the objective
unction:

C�m� � �zG
obs�h,mG� � zG�h,m��2. �13�

e can, of course, add more terms to equation 13 �e.g., a term for an
priori model, a regularization term, a geologic constraint, etc.�.
To construct the Jacobian of the associated linearized inverse

roblem, we need Fréchet derivatives of the forward model zG�h,m�
ith respect to model parameters m, which wedefine inAppendix A:

� zG�h,m�
� tm

� � �TG�h,zG�h,m�,mG�
� z

��1� �T�h,m�
� tm

�
�T�h,m�

� z

� z�h0,m�
� tm

� . �14�

he objective function of the linearized inverse problem is then

C�dm� � ��zG�h,m� �
� zG�h,m�

� tm
dm�2

. �15�

he method allows an iterative solution of the nonlinear inverse
roblem because we can calculate the following residual exactly af-
er each model update:

zG�h,m � dm� � zG
obs�h,mG� � zG�h,m � dm� . �16�

In Appendix B, we show that it is possible to formulate the linear-
zed inverse problem in equation 15 with time residuals, similar to

VA tomography, so that we can use a standard linear solver for
raveltime inversion in our method.

APPLICATION TO THE NORTH SEA DATA

We applied our method during a 3D depth-imaging project of an
rea of about 480 km2 in the North Sea. Sonic logs and well markers
f four wells also were available. Two seismic lines of this area are
hown in Figure 5. H1, H2, and H3 define base horizons of corre-
ponding layers. Therefore, both horizons and layers are labeled H1,
2, or H3. We report here the velocity-model construction down to
orizon H3 �base of Cretaceous� in Figure 5, which is characterized
y fast velocities compared with the overburden. The project was
tarted with an initial PSDM using an isotropic V0 � kz model. Val-
es for V0 and k were optimized by MVA to flatten CIGs along hori-
on H1 only. This 1D model provides good focusing above horizon
1 but is too fast for layer H2 and sometimes too slow below horizon
3 �Figures 8c and 8d, 9c and 9d�. Moreover, horizons H2 and H3

re too deep compared with the well markers �Figure 5c�, indicating
he vertical velocity is too fast.
Downloaded 03 Jan 2011 to 193.55.218.41. Redistribution subject to S
The well match cannot be improved with a 3D isotropic model,
hich indicates we need an anisotropic velocity model to explain the

eismic and well data. A blocky model using factorized VTI aniso-
ropy �Sexton, 1998; Sarkar and Tsvankin, 2004� for phase velocity
�� ,x,y,z� � �V�x,y� � kz�A�� ,� ,�� with phase angle � and Th-
msen’s �1986� anisotropic parameters � and � was chosen. The
�x,y� maps are represented by B-splines, whereas k, � , and � are
onstant per layer. The blocky model is most suitable for represent-
ng strong velocity contrasts at horizons H2 and H3 and for optimiz-
ng the well tie between layer boundaries and well markers in the in-
erse problem �Sexton, 1998�.

Let us first assume that we apply the PSDM cycle after the initial
SDM with the V0 � kz model. At least one anisotropic inversion
ould be required to optimize layer H1. For layer H2, we would
eed one isotropic PSDM followed by at least one anisotropic
SDM. Layer H3 �Cretaceous� is considered isotropic but with a
trong vertical velocity gradient. Updating the Cretaceous layer
ould require at least one isotropic PSDM. Therefore, we have to

un at least four PSDMs for model updating plus a final PSDM to QC

igure 4. Definition of tomographic misfit in depth-migrated do-
ain.

a) b)

c) d)

igure 5. �a� Line A: PSDM postmigration stack from initial model
nd interpretations that define reflector horizons for tomography. �b�
ine A: PSDM postmigration stack from updated model and remi-
rated horizons. �c� Line B: initial model does not match markers of
orizons H2 and H3. �d� Line B: updated anisotropic model better
ocuses the seismic data and matches the well markers of H2 and H3.
EG license or copyright; see Terms of Use at http://segdl.org/
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he Cretaceous layer. We also assume optimal model parameters are
ound immediately with each linear tomography. However, this is
arely the case, and several test PSDMs need to be run to optimize
he parameterization of tomography �number of unknowns, regular-
zation weights�.

With the nonlinear tomography, we can perform the inversion glo-
ally or by layer stripping using a blocky model as the initial tomog-
aphic model �the initial migration model was smooth�. We chose to
pdate layers H1 and H2 jointly �Figure 6 and Table 1�. Initial model
arameters for V�x,y� and k are average values derived from well
ogs. For layer H1, we obtained values V � 2050 m/s, k � 0.636
�1. For layer H2, we obtained V � 1600 m/s, k � 0.0 s�1. Initial
nisotropy parameters were obtained from regional knowledge and
ubsequently used as a priori values: � � 0.04, � � 0.04 for layer
1 and � � 0.07, � � 0.07 for layer H2. During the inversion with

even iterations, for layer H1 we optimized only the V�x,y� map
Figure 6a�.

able 1. Evolution of � , �, and well tie (average, standard
eviation) for layer H2.

� �

Well tie

Average Standard deviation

Iteration 0 0.07 0.07 39.1 m 41.9 m

Iteration 1 0.07 0.07 10.6 m 12.52 m

Iteration 2 0.07 0.07 8.92 m 10.99 m

Iteration 3 0.07 0.07 8.96 m 11.06 m

Iteration 4 0.08 0.143 11.2 m 12.03 m

Iteration 5 0.797 0.146 10.8 m 11.8 m

Iteration 6 0.067 0.131 0.654 m 0.763 m

Iteration 7 0.068 0.128 0.668 m 0.8 m

igure 6. �a� Initial and final rms misfit maps and
�x,y� maps of horizon H1. Circles indicate well

ocations. �b� Evolution of rms misfit maps and
�x,y� maps for horizon H2 during iterations. �c�
bjective function of the joint inversion of layers
1 and H2 �see also Table 1�.
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Figure 6b and Table 1 show the evolution of model parameters of
ayer H2. Each cell of rms misfit maps in Figure 6 displays the rms

isfit calculated for all finite-offset ray pairs of a common reflection
oint on the horizon. Until iteration 3, we tried to optimize only
�x,y� maps, keeping � and � as our a priori values, and we obtained
decrease of the seismic misfit term �equation 13� and of a second
ell misfit term in the global objective function �Figure 6c, Table 1�.
rom iteration 4 onward, we tried to find an anelliptic model for lay-
r H2. We noticed the seismic misfit decreased, but this was not the
ase for the well misfit �point 1 in Figure 6c�. In this situation, we
alanced the trade-off between model-mismatch and model-estima-
ion errors with objective-function weights. We chose increasing
eights of the well misfit term in the global objective function �point
in Figure 6c�. At iteration 7, we finally obtained a better well tie,

ut we slightly increased the seismic misfit. We see here the value of
he cost function for analyzing the trade-off between model-mis-

atch and model-estimation errors.
Finally, we updated V�x,y� and k for layer H3 during 15 iterations

Figure 7�. Until iteration 3, we estimated jointly an average constant
elocity of V � 1702 m/s and a vertical gradient of k � 1.1218 s�1.
e used these as a priori values for the remaining iterations.At itera-

ion 4 �point 2 in Figure 7c�, we also started to invert well misfits and
ncreased their weights at iteration 6, which increased the seismic

isfit �point 3 in Figure 7c�. Then we reduced the well-misfit weight
lightly and refined the V�x,y� B-spline grid progressively until iter-
tion 15.

Below horizon H3, we flooded the model with average values for
and k that were obtained from sonic logs. In Figures 8 and 9, we

isplay linesAand B with the initial and final model. Figure 8 shows
section in which layer H3 is quite thick and is pinching out at layer
2. Figure 9 shows a section in which a well penetrates layer H3.
he match between the velocity model and well data is shown in Fig-
re 10. The nonlinear tomography provides an overall improved ve-
ocity model with good balance between seismic focusing and well
ie. The time savings with respect to the PSDM cycle was estimated
o be at least a factor of four.
EG license or copyright; see Terms of Use at http://segdl.org/
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Figure 7. Update of layer H3. �a� V�x,y� maps of
initial model �iteration 0� and final model �iteration
15�. �b� The rms misfit maps of initial and final
model. Circles indicate well locations. �c� Objec-
tive function.
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a)

b)

c)

d)

e)

f)

g)

h)

igure 8. Line A. �a� Initial migration model. �b� Postmigration
tack. �c� CIGs of initial model. Note the strong up-and-down curv-
ng RMO �arrow�. �d� RMO at reference offset 3500 m. �e� Model
fter nonlinear tomography. The area in the dotted line was not up-
ated with tomography. �f� Postmigration stack with updated model.
g� CIGs with updated model. �h� RMO at reference offset 3500 m.
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a)

b)

c)

d)

e)

f)

g)

h)

igure 9. Line B. Example at well location. �a� Initial migration
odel. �b� Postmigration stack. �c� CIGs of initial model. Note the

trong up-and-down curving RMO �arrow�. �d� RMO at reference
ffset 3500 m. �e� Model after nonlinear tomography. The area in the
otted line was not updated with tomography. �f� Postmigration
tack with updated model. �g� CIGs with updated model. �h� RMO at
eference offset 3500 m.
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CONCLUSIONS

We have presented a new nonlinear tomographic inversion meth-
d using RMO in depth-migrated CIGs of Kirchhoff PSDM. The
ovelty is that we consider the imaged depth of an initial PSDM as
he invariant observable zobs for the nonlinear data fitting in the least-
quares sense similar to observed traveltimes T obs in traveltime in-
ersion. Keeping the migrated data as invariants requires dissociat-
ng the migration velocity model from the tomographic model. The
orward modeling is extended by a finite-offset map migration in the
nitial, possibly incorrect, migration model, and the tomographic

isfit is measured in depth. The linearized inverse problem can be
eformulated with time residuals so the method is implemented easi-
y in existing traveltime-inversion algorithms.

We have applied the method successfully to a North Sea data set in
onstructing an anisotropic VTI velocity-depth model much faster
han with the PSDM cycle. On our example, we estimate a gain of a
actor of four. Furthermore, the method provides important QC
unctions, which can be used to optimize model parameterizations
nd handle the trade-off between model mismatch errors and model
stimation errors. Therefore, the method will be suitable for tomog-
aphic sensitivity analysis to assess structural uncertainties in PSDM
mages and to quickly build velocity-depth models for very large
eismic data sets, such as wide-azimuth data, in which Kirchhoff
epth migration will become very expensive computationally.
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APPENDIX A

FRÉCHET DERIVATIVES

In this appendix, we discuss the calculation of Fréchet deriva-
ives in equation 14. Because our method is horizon based, we con-
ider only perturbations of traveltime and horizon functions. The

igure 10. Comparison between velocity model, well markers, and
P sonic log.
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tarting point is the first equation in equation 9, in which we intro-
uce half-offset h, midpoint �� ,��, and the model dependency of the
odeled imaged depth zG�h,m�:

T�h,� ,� ,z�h0,m�,m� � TG�h,� ,� ,zG�h,m�,mG� .

�A-1�

ntroducing a model perturbation dm in equation A-1,

T�h,� ,� ,z�h0,m � dm�,m � dm� � TG�h,� ,� ,zG�h,m

� dm�,mG� , �A-2�

ollowed by linearization yields

�T�h,m�
� tm

�
�T�h,m�

� z

� z�h0,m�
� tm

�
�TG�h,zG�h,m�,mG�

� z

� zG�h,m�
� tm

�A-3�

nd the required Fréchet derivative

� zG�h,m�
� tm

� � �TG�h,zG�h,m�,mG�
� z

��1� �T�h,m�
� tm

�
�T�h,m�

� z

� z�h0,m�
� tm

� . �A-4�

APPENDIX B

FORMULATION OF THE LINEARIZED
INVERSE PROBLEM IN THE TIME DOMAIN

As shown by Stork �1992� linear MVA tomography can be for-
ulated in the time domain by converting depth errors into time re-

iduals. It is straightforward to apply this concept to the linearized
nverse problem in equation 15.

According to Figure 4, the forward-modeled data of tomographic
odel m are connected to the point xG with depth zG�h,m�. At loca-

ion �xG,yG�, we observe the imaged depth zG
obs�h,mG� and misfit in

epth �zG�h,m� � zG
obs�h,mG� � zG�h,m�. We reconstruct the cor-

esponding observed traveltime T obs approximately, taking the first
quation in equation 8 as a starting point:

T obs�h,� ,�� � TG�h,� ,� ,zG
obs�h,mG�,mG�

� TG�h,� ,� ,zG�h,m� � �zG�h,m�,mG�

� TG�h,zG�h,m�,mG�

�
�TG�h,zG�h,m�,mG�

� z
�zG�h,m�

� TG�h,zG�h,m�,mG� � �tG�h,m� , �B-1�

ith

�tG�h,m� �
�TG�h,zG�h,m�,mG�

� z
�zG�h,m�

�
�TG�h,zG�h,m�,mG�

� z
�zG

obs�h,mG� � zG�h,m�� .

�B-2�
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Applying the linearization principle of traveltime tomography as
n equations 2 and 6, we can use the objective function of the linear-
zed inverse problem:

C�dm� � �T obs�h� � T�h,z�h0,m�,m� � � �T�h,m�
� tm

�
�T�h,m�

� z

� z�h0,m�
� tm

�dm�2

. �B-3�

ecause T�h,xG,mG� � T�h,z�h0,m�,m� by definition �equation 9�,
e obtain with equation B-1

C�dm� � ��tG�h,m� � � �T�h,m�
� tm

�
�T�h,m�

� z

� z�h0,m�
� tm

�dm�2

. �B-4�

Note that �tG�h,m� in equation B-4 can be recalculated after each
teration because it contains zG

obs�h,mG�. Comparing equations B-4
nd 15 shows that they differ by the factor ��TG/� z�. Another inter-
sting property of equation B-4 is that the first iteration of our non-
inear inverse problem �equation 13� is equivalent to linear MVA to-

ography �equation 7� when we choose mG as the initial model for
. In this case, the tomographic misfit �zG�h,m� is equal to the

icked RMO �zG
obs�h,mG� because the modeled imaged depth

G�h,m � mG� � zG�h0,mG� is constant �horizontal line in Figure
�.
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